Abstract
In order to accelerate the convergence rate and reduce the steady-state misalignment of the affine projection sign algorithm (APSA), a novel variable step-size APSA based on a posteriori estimation error (APEE) analysis is proposed. The new algorithm modified the iterative process of the APSA in which only sign information of the output error is used. The variable step size is obtained by minimizing the \(L_{2}\)-norm of the APEE. And the step size has a large value in the initial stage and a small value in the steady state, which can better reflect the working state of the robust adaptive filter than the APSA with fixed step sizes. Therefore, the proposed algorithm achieves a faster convergence and a lower steady-state misalignment than the APSA and its variable step-size versions. The simulation results provided in the paper confirm that the proposed algorithm retains both the advantages of the APSA with large and small step sizes without significantly increase the computational complexity.
Similar content being viewed by others
References
Y.-R. Chien, W.-J. Tseng, Switching-based variable step-size approach for partial update LMS algorithms. Electron. Lett. 49(17), 1081–1083 (2013). doi:10.1049/el.2013.1762
K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67(5), 19–27 (1984). doi:10.1002/ecja.4400670503
S. Sankaran, A. Beex, Convergence behavior of affine projection algorithms. IEEE Trans. Signal Process. 48(4), 1086–1096 (2000). doi:10.1109/78.827542
T. Shao, Y. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010). doi:10.1109/LSP.2010.2040203
H.C. Shin, A.H. Sayed, Mean-square performance of a family of affine projection algorithms. IEEE Trans. Signal Process. 52(1), 90–102 (2004). doi:10.1109/TSP.2003.820077
D.T.M. Slock, On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993). doi:10.1109/78.236504
L.R. Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56(5), 1878–1893 (2008). doi:10.1109/TSP.2007.913142
L.R. Vega, H. Rey, J. Benesty, A robust variable step-size affine projection algorithm. Signal Process. 90(9), 2806–2810 (2010). doi:10.1016/j.sigpro.2010.03.029
J. Wang, Z. Lu, Y. Li, A. New, CDMA encoding/decoding method for on-chip communication network. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(4), 1607–1611 (2015). doi:10.1109/TVLSI.2015.2471077
B. Widrow, S.D. Sterns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, 1985), pp. 33–186
J.W. Yoo, J.W. Shin, P.G. Park, Variable step-size affine projection sign algorithm. IEEE Trans. Circuits Syst. II Exp. Briefs 61(4), 274–278 (2014). doi:10.1109/TCSII.2014.2305013
J.W. Yoo, J.W. Shin, P.G. Park, Variable step size affine projection sign algorithm. Electron. Lett. 48(9), 483–485 (2012). doi:10.1049/el.2012.0751
S. Zhang, J. Zhang, Modified variable step-size affine projection sign algorithm. Electron. Lett. 49(20), 1264–1265 (2013). doi:10.1049/el.2013.2337
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ren, C., Wang, Z. & Zhao, Z. A New Variable Step-Size Affine Projection Sign Algorithm Based on A Posteriori Estimation Error Analysis. Circuits Syst Signal Process 36, 1989–2011 (2017). https://doi.org/10.1007/s00034-016-0389-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0389-1