Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Variable Step-Size Affine Projection Sign Algorithm Based on A Posteriori Estimation Error Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In order to accelerate the convergence rate and reduce the steady-state misalignment of the affine projection sign algorithm (APSA), a novel variable step-size APSA based on a posteriori estimation error (APEE) analysis is proposed. The new algorithm modified the iterative process of the APSA in which only sign information of the output error is used. The variable step size is obtained by minimizing the \(L_{2}\)-norm of the APEE. And the step size has a large value in the initial stage and a small value in the steady state, which can better reflect the working state of the robust adaptive filter than the APSA with fixed step sizes. Therefore, the proposed algorithm achieves a faster convergence and a lower steady-state misalignment than the APSA and its variable step-size versions. The simulation results provided in the paper confirm that the proposed algorithm retains both the advantages of the APSA with large and small step sizes without significantly increase the computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y.-R. Chien, W.-J. Tseng, Switching-based variable step-size approach for partial update LMS algorithms. Electron. Lett. 49(17), 1081–1083 (2013). doi:10.1049/el.2013.1762

    Article  Google Scholar 

  2. K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67(5), 19–27 (1984). doi:10.1002/ecja.4400670503

    Article  MathSciNet  Google Scholar 

  3. S. Sankaran, A. Beex, Convergence behavior of affine projection algorithms. IEEE Trans. Signal Process. 48(4), 1086–1096 (2000). doi:10.1109/78.827542

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Shao, Y. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010). doi:10.1109/LSP.2010.2040203

    Article  Google Scholar 

  5. H.C. Shin, A.H. Sayed, Mean-square performance of a family of affine projection algorithms. IEEE Trans. Signal Process. 52(1), 90–102 (2004). doi:10.1109/TSP.2003.820077

    Article  MathSciNet  Google Scholar 

  6. D.T.M. Slock, On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993). doi:10.1109/78.236504

    Article  MATH  Google Scholar 

  7. L.R. Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56(5), 1878–1893 (2008). doi:10.1109/TSP.2007.913142

    Article  MathSciNet  Google Scholar 

  8. L.R. Vega, H. Rey, J. Benesty, A robust variable step-size affine projection algorithm. Signal Process. 90(9), 2806–2810 (2010). doi:10.1016/j.sigpro.2010.03.029

    Article  MATH  Google Scholar 

  9. J. Wang, Z. Lu, Y. Li, A. New, CDMA encoding/decoding method for on-chip communication network. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(4), 1607–1611 (2015). doi:10.1109/TVLSI.2015.2471077

    Article  Google Scholar 

  10. B. Widrow, S.D. Sterns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, 1985), pp. 33–186

    Google Scholar 

  11. J.W. Yoo, J.W. Shin, P.G. Park, Variable step-size affine projection sign algorithm. IEEE Trans. Circuits Syst. II Exp. Briefs 61(4), 274–278 (2014). doi:10.1109/TCSII.2014.2305013

    Article  Google Scholar 

  12. J.W. Yoo, J.W. Shin, P.G. Park, Variable step size affine projection sign algorithm. Electron. Lett. 48(9), 483–485 (2012). doi:10.1049/el.2012.0751

    Article  Google Scholar 

  13. S. Zhang, J. Zhang, Modified variable step-size affine projection sign algorithm. Electron. Lett. 49(20), 1264–1265 (2013). doi:10.1049/el.2013.2337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Wang, Z. & Zhao, Z. A New Variable Step-Size Affine Projection Sign Algorithm Based on A Posteriori Estimation Error Analysis. Circuits Syst Signal Process 36, 1989–2011 (2017). https://doi.org/10.1007/s00034-016-0389-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0389-1

Keywords