Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Filter-based Bayer Pattern CFA Demosaicking

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce an efficient demosaicking method based on an advanced nonlocal mean (NLM) filter using adaptive weight with consideration of both neighborhood similarity and patch distance. The to-be-interpolated missing color information is considered to be populated by the weight average of directional estimation in six directions: north, south, west, east, pro-diagonal, and anti-diagonal. The NLM sets adaptive weight by obtaining neighborhood similarity between a missing color pixel and the given neighbor color pixels, and similar local neighborhoods are selected to calculate the adaptive weight. The proposed advanced NLM filter is designed to assign weight as a combination of NLM and spatial location distance. The nearer a pixel to a missing pixel, the larger is its chance of having a local structure similar to that of the to-be-interpolated pixel. Considering this evidence and from the viewpoint of reducing computational complexity, we employ location distance to control weights. The new advanced NLM filter is better parametrized, and the weights therein are impacted both by patch similarity and location distance. We present experimental results in terms of CPSNR, S-CIELAB \(\Delta \) E*, and FSIM to clarify the performance of the proposed algorithm objectively and subjectively. The experimental results indicate that the proposed method outperforms existing approaches both objectively and subjectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in IEEE CVPR (June 2005), pp. 60–65

  2. L. Chang, Y.-P. Tam, Effective use of spatial and spectral correlations for color filter array demosaicking. IEEE Trans. Consum. Electron. 50(1), 355–365 (2004)

    Article  Google Scholar 

  3. W.-J. Chen, P.-Y. Chang, Effective demosaicking algorithm based on edge property for color filter arrays. Digit. Signal Process. 22(1), 163–169 (2012)

    Article  MathSciNet  Google Scholar 

  4. X. Chen, G. Jeon, J. Jeong, Voting-based directional interpolation method and its application to still color image demosaicking. IEEE Trans. Circuits Syst. Video Technol. 24(2), 255–262 (2014)

    Article  Google Scholar 

  5. X. Chen, G. Jeon, J. Jeong, L. He, Multidirectional weighted interpolation and refinement method for Bayer pattern CFA demosaicking. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1271–1282 (2015)

    Article  Google Scholar 

  6. K.-H. Chung, Y.-H. Chan, Color demosaicing using variance of color differences. IEEE Trans. Image Process. 15(10), 2944–2955 (2006)

    Article  Google Scholar 

  7. Z. Dengwen, X. Xiaoliu, D. Weiming, Colour demosaicking with directional filtering and weighting. IET Image Process. 6(8), 1084–1092 (2012)

    Article  MathSciNet  Google Scholar 

  8. E. Dubois, Frequency-domain methods for demosaicking of bayer-sampled color images. IEEE Signal Process. Lett. 12(12), 847–850 (2005)

    Article  Google Scholar 

  9. B.K. Gunturk, J. Glotzbach, Y. Altunbask, R.W. Schafer, R.M. Mersereau, Demosaicing: color filter array interpolation. IEEE Signal Process. Mag. 22(1), 44–54 (2005)

    Article  Google Scholar 

  10. J.F. Hamilton, J.E. Adams, Adaptive color plane interpolation in single sensor color electronic camera. U.S. Patent 5, 629–734 (1997)

    Google Scholar 

  11. K. Hirakawa, T.W. Parks, Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans. Image Process. 14(3), 360–369 (2005)

    Article  Google Scholar 

  12. G. Jeon, E. Dubois, Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and noise level estimation. IEEE Trans. Image Process. 22(1), 146–156 (2013)

    Article  MathSciNet  Google Scholar 

  13. J. Kim, G. Jeon, J. Jeong, Taylor series and adaptive fusion strategy for Bayer demosaicking. Digit. Signal Process. 35, 53–63 (2014)

    Article  Google Scholar 

  14. J. Kim, G. Jeon, J. Jeong, Demosaicking using geometric duality and dilated directional differentiation. Opt. Commun. 324, 194–201 (2014)

    Article  Google Scholar 

  15. B. Leung, G. Jeon, E. Dubois, Least-squares luma-chroma demultiplexing algorithm for bayer demosaicking. IEEE Trans. Image Process. 20(7), 1885–1894 (2011)

    Article  MathSciNet  Google Scholar 

  16. N.X. Lian, L. Chang, Y.P. Tan, V. Zagorodnov, Adaptive filtering for color filter array demosaicking. IEEE Trans. Image Process. 16(10), 2515–2525 (2007)

    Article  MathSciNet  Google Scholar 

  17. J.S.J. Li, S. Randhawa, Color filter array demosaicking using high-order interpolation techniques with a weighted median filter for sharp color edge preservation. IEEE Trans. Image Process. 18(9), 1946–1957 (2009)

    Article  MathSciNet  Google Scholar 

  18. R. Lukac, K.N. Plataniotis, D. Hatzinakos, Color image zooming on the Bayer pattern. IEEE Trans. Circuits Syst. Video Technol. 15(11), 1475–1492 (2005)

    Article  Google Scholar 

  19. D. Menon, S. Andriani, G. Calvagno, Demosaicing with directional filtering and a posteriori decision. IEEE Trans. Image Process. 16(1), 132–141 (2007)

    Article  MathSciNet  Google Scholar 

  20. D. Menon, G. Calvagno, Regularization approaches to demosaicking. IEEE Trans. Image Process. 18(10), 2209–2220 (2009)

    Article  MathSciNet  Google Scholar 

  21. S.-C. Pei, I.-K. Tam, Effective color interpolation in CCD color filter arrays using signal correlation. IEEE Trans. Circuits Syst. Video Technol. 13(6), 503–513 (2003)

    Article  Google Scholar 

  22. I. Pekkucuksen, Y. Altunbasak, Edge strength filter based color filter array interpolation. IEEE Trans. Image Process. 21(1), 393–397 (2012)

    Article  MathSciNet  Google Scholar 

  23. I. Pekkucuksen, Y. Altunbasak, Multiscale gradients-based color filter array interpolation. IEEE Trans. Image Process. 22(1), 157–165 (2013)

    Article  MathSciNet  Google Scholar 

  24. C.-Y. Su, W.-C. Kao, Effective demosaicing using subband correlation. IEEE Trans. Consum. Electron. 55(1), 199–204 (2009)

    Article  Google Scholar 

  25. L. Wang, G. Jeon, Bayer pattern CFA demosaicking based on multi-directional weighted interpolation and guided filter. IEEE Signal Process. Lett. 22(11), 2083–2087 (2015)

    Article  Google Scholar 

  26. L. Zhang, X. Wu, A. Buades, X. Li, Color demosaicking by local directional interpolation and non-local adaptive thresholding. J. Electron. Imaging 20(2), 023016 (2011)

    Article  Google Scholar 

  27. L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 8(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  28. X. Zhang, B.A. Wandell, A spatial extension of CIELAB for digital color image reproduction. J. Soc. Inf. Displ. 5(1), 61–67 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Post-Doctor Research Program (2015) through the Incheon National University (INU), Incheon, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwanggil Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, J., Wu, Z. et al. Filter-based Bayer Pattern CFA Demosaicking. Circuits Syst Signal Process 36, 2917–2940 (2017). https://doi.org/10.1007/s00034-016-0448-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0448-7

Keywords