Abstract
Hyperjerk systems have received considerable interest in the literature because of their simplicity and complex dynamical properties. In this work, we introduce a novel hyperjerk system with an absolute nonlinearity and a quintic term. Interestingly, the hyperjerk system exhibits hyperchaotic behavior. Dynamics and the feasibility of the hyperjerk system are discovered by using numerical analysis and circuit implementation. Moreover, adaptive controllers have been designed for stabilization and synchronization of the new hyperjerk system. The control results have been established by using Lyapunov stability theory, and numerical simulations with MATLAB have been shown to illustrate the validity of the constructed adaptive controllers.
Similar content being viewed by others
References
S. Banerjee, Chaos Synchronization and Cryptography for Secure Communication (IGI Global, Pennsylvania, 2010)
M. Borah, P.P. Singh, B.K. Roy, Improved chaotic dynamics of a fractional-order system, its chaos-suppressed synchronisation and circuit implementation. Circuits Syst. Signal Process. 35, 1871–1907 (2016)
S. Bouali, A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, Emulating complex business cycles by using an electronic analogue. Nonl. Anal: Real World Appl. 13, 2459–2465 (2012)
J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lu systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29, 527–538 (2010)
G.R. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)
K.E. Chlouverakis, J.C. Sprott, Chaotic hyperjerk systems. Chaos, Solitons Fractals 28, 739–746 (2006)
S. Cicek, Y. Uyaroglu, I. Pehlivan, Simulation and circuit implementation of Sprott case H chaotic system and its synchronization application for secure communication systems. J. Circuit Syst. Comput. 22, 1350,022 (2013)
F.Y. Dalkiran, J.C. Sprott, Simple chaotic hyperjerk system. Int. J. Bifurc. Chaos 26, 1650189 (2016)
R. Eichhorn, S.J. Linz, P. Hanggi, Simple polynomial classes of chaotic jerky dynamics. Chaos Solitons Fractals 13, 1–15 (2002)
Z. Elhadj, J.C. Sprott, Transformation of 4-D dynamical systems to hyperjerk form. Palest. J. Maths. 2, 38–45 (2013)
E. Fatemi-Behbahani, K. Ansari-Asl, E. Farshidi, A new approach to analysis and design of chaos-based random number generators using algorithmic converter. Circuits Syst. Signal Process. 35, 3830–3846 (2016)
P. Fei, Q. Shui-Sheng, L. Min, A secure digital signature algorithm based on elliptic curve and chaotic mappings. Circuits Syst. Signal Process. 24, 585–597 (2005)
R.A. Freeman, P.V. Kokotović, Backstepping design of robust controllers for a class of nonlinear systems. In: Procedings of IJAC Nonlinear Control Systems Design Symposium, pp. 307–312. Bordeaux, France (1992)
J. Kengne, Z.T. Njitacke, H. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)
H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, New Jersey, 2002)
M.F. Khan, F. Baig, S. Beg, Steganography between silence intervals of audio in video content using chaotic map. Circuits Syst. Signal Process. 33, 3901–3919 (2014)
S.T. Kingni, V.T. Pham, S. Jafari, G.R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35, 1933–1948 (2016)
C. Lainscsek, C. Lettellier, I. Gorodnitsky, Global modeling of the rössler system from the z-variable. Phys. Lett. A 314, 409–427 (2003)
F.C.M. Lau, G. Kolumban, Performance limit of chaotic digital waveform communication systems: approach of maximizing a posteriori probability. Circuits Syst. Signal Process. 24, 639–655 (2005)
S.J. Linz, Nonlinear dynamical models and jerky motion. Am. J. Phys. 65, 523–526 (1997)
S.J. Linz, On hyperjerky systems. Chaos, Solitons Fractals 37, 741–747 (2008)
C. Liu, J. Yi, X. Xi, L. An, Y. Fu, Research on the multi-scroll chaos generation based on Jerk mode. Proc. Eng. 29, 957–961 (2012)
H. Liu, A. Kadir, Y. Li, Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik 127, 7431–7438 (2016)
E. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
P. Louodop, M. Kountchou, H. Fotsin, S. Bowong, Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dyn. 78, 597–607 (2014)
J.M. Malasoma, What is the simplest dissipative chaotic jerk equation which is parity invariant. Phys. Lett. A 264, 383–389 (2000)
D. Meng, Robust adaptive synchronization of the energy resource system with constraint. Math. Probl. Eng. 2013, 1–7 (2013)
D. Meng, Adaptive neural networks synchronization of a four-dimensional energy resource stochastic system. Abstr. Appl. Anal. 2014, 1–8 (2014)
D. Meng, Neural networks adaptive synchronization for four-dimension energy resource system with unknown dead zones. Neurocomputing 151, 1495–1499 (2015)
B. Munmuangsaen, B. Srisuchinwong, Elementary chaotic snap flows. Chaos, Solitons Fractals 44, 995–1003 (2011)
B. Munmuangsaen, B. Srisuchinwong, J.C. Sprott, Generalization of the simplest autonomous chaotic system. Phys. Lett. A 375, 1445–1450 (2011)
S. Sahin, C. Guzelis, A dynamical state feedback chaotification method with application on liquid mixing. J. Circuit Syst. Comput. 22, 1350059 (2013)
S. Schot, Jerk: the time rate of change of acceleration. Am. J. Phys. 46, 1090–1094 (1978)
J. Sprott, Some simple chaotic flows. Phys. Rev. E 50, R647–650 (1994)
J.C. Sprott, Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)
J.C. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)
J.C. Sprott, A new chaotic jerk circuit. IEEE Trans. Circuits Syst.-II: Exp. Briefs 58, 240–243 (2011)
B. Srisuchinwong, N. Amonchailertrat, Realization of a Lambert W-function for a chaotic circuit. J. Circuit Syst. Comput. 22, 1350075 (2013)
K.H. Sun, J.C. Sprott, A simple jerk system with piecewise exponential nonlinearity. Int. J. Nonlinear Sci. Num. Simul. 10, 1443–1450 (2009)
A. Tayebi, S. Berber, A. Swain, Performance analysis of chaotic DSSS-CDMA synchronization under jamming attack. Circuits Syst. Signal Process. 35, 4350–4371 (2016)
S. Vaidyanathan, Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method. Arch. Control Sci. 26, 311–338 (2016)
S. Vaidyanathan, C. Volos, V.T. Pham, K. Madhavan, Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch. Control Sci. 25, 135–158 (2015)
S. Vaidyanathan, C. Volos, V.T. Pham, K. Madhavan, B.A. Idowo, Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch. Control Sci. 33, 257–285 (2014)
C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, A chaotic path planning generator for autonomous mobile robots. Robot. Autom. Syst. 60, 651–656 (2012)
C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Image encryption process based on chaotic synchronization phenomena. Signal Process. 93, 1328–1340 (2013)
B. Wang, H. Xu, P. Yang, L. Liu, J. Li, Target detection and ranging through lossy media using chaotic radar. Entropy 17, 2082–2093 (2015)
K.W. Wong, K.P. Man, S. Li, X. Liao, A more secure chaotic cryptographic scheme based on the dynamic look-up table. Circuits Syst. Signal Process. 24, 571–584 (2005)
X. Wu, Y. He, W. Yu, B. Yin, A new chaotic attractor and its synchronization implementation. Circuits Syst. Signal Process. 34, 1747–1768 (2015)
Y. Wu, R. Lu, P. Shi, H. Su, Z. Wu, Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)
Y. Wu, X. Meng, L. Xie, R. Lu, H. Su, Z. Wu, An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)
Y. Wu, H. Su, P. Shi, R. Lu, Z. Wu, Consensus of multiagent systems using aperiodic sampled-data control. IEEE Trans. Cybern. 46, 2132–2143 (2016)
Y. Wu, H. Su, P. Shi, R. Lu, Z. Wu, Output synchronization of nonidentical linear multiagent systems. IEEE Trans. Cybern. 47, 130–141 (2017)
X. Xie, Z. Liu, X. Zhu, An efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time T-S fuzzy systems. J. Fuzzy Sets Syst. 263, 71–81 (2015)
X. Xie, D. Yue, T. Ma, X. Zhu, Further studies on control synthesis of discrete-time T-S fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybern. 44, 2784–2791 (2014)
M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I, Regular Pap. 51, 1395–1404 (2004)
D. Zhang, P. Shi, Q. Wang, L. Yu, Analysis and synthesis of networked control systems: a survey of recent advances and challenges. ISA Trans. 66, 376–392 (2017)
D. Zhang, P. Shi, W. Zhang, L. Yu, Energy–efficient distributed filtering in sensor networks: a unified switched system approach. IEEE Trans. Cybern. pp. 1–12 (2016). doi: 10.1109/TCYB.2016.2553043)
D. Zhang, H.Y. Song, L. Yu, Robust fuzzy–model–based filtering for nonlinear cyber–physical systems with multiple stochastic incomplete measurements. IEEE Trans. Syst. Man Cybern. pp. 1–13 (2016). doi: 10.1109/TSMC.2016.2551200)
D. Zhang, Q. Wang, D. Srinivasan, H. Li, L. Yu, Asynchronous state estimation for discrete–time switched complex networks with communication constraints. IEEE Trans. Neural Netw. Learn. Syst. pp. 1–15 (2017). doi: 10.1109/TNNLS.2017.2678681)
J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 24, 599–613 (2005)
W. Zhou, Z. Wang, M. Wu, W. Zheng, J. Weng, Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Optik 126, 765–768 (2015)
Acknowledgements
The authors acknowledge Prof. GuanRong Chen, Department of Electronic Engineering, City University of Hong Kong, for suggesting many helpful references.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Daltzis, P., Vaidyanathan, S., Pham, V. et al. Hyperchaotic Attractor in a Novel Hyperjerk System with Two Nonlinearities. Circuits Syst Signal Process 37, 613–635 (2018). https://doi.org/10.1007/s00034-017-0581-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-017-0581-y