Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Maximum-Output-Power Beamforming Despite No Prior Information About the Signals-of-Interest Nor Possibly About the Interference

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a new data-dependent beamforming strategy to adaptively maximize the output power, while nulling preset directions-of-arrival. This new beamformer needs no iterative computation and needs no prior information of the signals-of-interest’s incident directions nor temporal waveforms. Surprisingly, this proposed beamformer can “blindly” null any dominant interferences with no prior information of their incident directions nor of their waveforms, even as this beamformer simultaneously preserves the signals-of-interest as mentioned above. Monte Carlo simulations verify this new method’s superior array gain relative to the “linearly constrained minimum-variance” beamformer’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data and material used to support the findings of this study are available through Kainam Thomas WONG.

Notes

  1. The authors would like to thank Professor Hasan Saeed Mir for providing this example.

  2. For example, if there is prior knowledge that the emitters would impinge from directions-of-arrival anywhere in \(\in [20^\circ , 60^\circ ]\), then the LCMV beamforming could set one pass constraint and one zero-derivative constraint at each of \(25^\circ , 35^\circ , 45^\circ , 55^\circ \), thereby consuming a total of 8 degrees-of-freedom in the beamforming weight vector.

  3. A data-dependent beamformer contrasts with a data-independent beamformer. E.g., in beam-pattern synthesis/design, where the data-independent beamformer weights are calculated based only on the prior specifications of the “look direction(s)”, the “null direction(s)”, the main lobe’s maximally allowable spectral width, the sidelobes’ maximally allowable magnitude, etc., but without any adaptation to any empirically collected data.

  4. The maximum number of preset directions that can be nulled is \(K \le L-2\). Otherwise, \(\mathbf{U}_\mathrm{null}^H \mathbf{R} \mathbf{U}_\mathrm{null}\) would degenerate to a scalar. If \(L - K\) were only 1: Both \({\varvec{\alpha }}\) and \(\mathbf{U}_\mathrm{null}^H \mathbf{R} \mathbf{U}_\mathrm{null}\) in the cost function would degenerate to scalars, and \(\mathbf{w}_o\) would then be a scalar multiple of \( \mathbf{U}_\mathrm{null} \), with no degree-of-freedom left for any data-dependent optimization. That is, \(\mathbf{w}_o\) would become independent of the observed data \(\left\{ \mathbf{x}(t_m), \forall m \right\} \), hence incapable of adaptively maximizing the beamformer output power, even though \(\mathbf{w}_o\) can still suppress the K pre-specified null directions.

  5. To null K interfering waveforms from known directions, \(M \ge K\) time samples would be required at a minimum. This requirement would be readily satisfied by the sample applications aforementioned in Sect. 1.

  6. Consider the example of

    $$\begin{aligned} \mathbf{C}= & {} \left[ \mathbf{a}\left( \theta _0,\phi _0\right) , \mathbf{a}\left( \theta _1,\phi _1\right) , \frac{\partial \mathbf{a}\left( \theta ,\phi \right) }{\partial \theta }\big |_{\theta =\theta _2}, \frac{\partial \mathbf{a}\left( \theta ,\phi \right) }{\partial \phi }\big |_{\phi =\phi _2} \right] , \nonumber \\ \mathbf{g}= & {} \left[ 1, 0, 0, 0\right] ^T. \end{aligned}$$
    (21)

    These would pass (distortionlessly) the energy around the “look direction” of \((\theta _0,\phi _0)\) but would null directions around \((\theta _1,\phi _1)\).

References

  1. Y.H. Chen, F.P. Yu, Broadband adaptive beamforming based on coherent signal subspace using spatial interpolation preprocessing. IEE Proc. Radar Signal Process. 138(5), 489–494 (1991)

    Google Scholar 

  2. F.P.S. Chin, C.C. Ko, Broadband source tracking using adaptive directional filter with maximally flat responses at null directions. IEEE Trans. Signal Process. 44(7), 862–873 (1996)

    Google Scholar 

  3. Y. Chu, W.Y. Horng, A robust algorithm for adaptive interference cancellation. IEEE Trans. Antennas Propag. 56(7), 2121–2124 (2008)

    Google Scholar 

  4. S. Daneshmand, A. Broumandan, J. Nielsen, G. Lachapelle, Interference and multipath mitigation utilising a two-stage beamformer for global navigation satellite systems applications. IET Radar Sonar Navig. 7(1), 55–66 (2013)

    Google Scholar 

  5. R. Ebrahimi, S.R. Seydnejad, Elimination of pre-steering delays in space-time broadband beamforming using frequency domain constraints. IEEE Commun. Lett. 17(4), 769–772 (2013)

    Google Scholar 

  6. M.H. El Ayadl, Dependence of processing gain and interference immunity of adaptive narrow-band beam-formers on angular locations of interference sources. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1633–1637 (1990)

    Google Scholar 

  7. M. Er, A. Cantoni, Derivative constraints for broad-band element space antenna array processors. IEEE Trans. Acoust. Speech Signal Process. 31(6), 1378–1393 (1983)

    Google Scholar 

  8. M.H. Er, New GSC beamformer employing DOA estimation and null steering for linear array. Electron. Lett. 28(15), 1417–1418 (1992)

    Google Scholar 

  9. F. Feng, S. Li, W. Yu, P. Huang, W. Xu, Echo separation in multidimensional waveform encoding SAR remote sensing using an advanced null-steering beamformer. IEEE Trans. Geosci. Remote Sens. 50(10), 4157–4172 (2012)

    Google Scholar 

  10. O.L. Frost III, An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Google Scholar 

  11. A.B. Gershman, V.T. Ermolaev, Synthesis of the weight distribution of an adaptive antenna array with wide dips in the directional pattern. Radiophys. Quantum Electron. 34(6), 720–724 (1991)

    Google Scholar 

  12. A.B. Gershman, U. Nickel, J.F. Bohme, Adaptive beamforming algorithms with robustness against jammer motion. IEEE Trans. Signal Process. 45(7), 1878–1885 (1997)

    MATH  Google Scholar 

  13. S.D. Gray, A nulling performance comparison between a single and multiple-aperture multiple-beam antenna. IEEE Trans. Antennas Propag. 43(11), 1319–1324 (1995)

    Google Scholar 

  14. T.B. Hale, M.A. Temple, M.G. Wicks, J.F. Raquet, M.E. Oxley, Performance characterisation of hybrid STAP architecture incorporating elevation interferometry. IEE Proc. Radar Sonar Navig. 149(2), 77–82 (2002)

    Google Scholar 

  15. K.C. Huarng, C.C. Yeh, Performance analysis of derivative constraint adaptive arrays with pointing errors. IEEE Trans. Antennas Propag. 40(8), 975–981 (1992)

    Google Scholar 

  16. N.K. Jablon, Adaptive sidelobe beamforming with the generalized canceller in the presence of array imperfections. IEEE Trans. Antennas Propag. 34(8), 996–1012 (1986)

    Google Scholar 

  17. J.W. Kim, C.K. Un, Noise subspace approach for interference cancellation. Electron. Lett. 25(11), 712–713 (1989)

    Google Scholar 

  18. C.C. Ko, Adaptive array processing using the Davies beamformer. IEE Proc. Microw. Antennas Propag. 133(6), 467–473 (1986)

    Google Scholar 

  19. C.C. Ko, Fast null-steering algorithm for broadband power inversion array. IEE Proc. Radar Signal Process. 137(5), 377–383 (1990)

    Google Scholar 

  20. C.C. Ko, J. Wen, F. Chin, Adaptive null-steering algorithm for separating multiple directional sources in linear power-inversion arrays. IEE Proc. Microw. Antennas Propag. 139(6), 477–482 (1992)

    Google Scholar 

  21. C.C. Ko, A fast adaptive null-steering algorithm based on output power measurements. IEEE Trans. Aerosp. Electron. Syst. 29(3), 717–725 (1993)

    Google Scholar 

  22. K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDonough, M. Wolfel, Adaptive beamforming with a minimum mutual information criterion. IEEE Trans. Audio Speech Lang. Process. 15(8), 2527–2541 (2007)

    Google Scholar 

  23. J. Landon, B.D. Jeffs, K.F. Warnick, Model-based subspace projection beamforming for deep interference nulling. IEEE Trans. Signal Process. 60(3), 1215–1228 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Y. Liu, Q. Wan, Robust beamformer based on total variation minimisation and sparse-constraint. Electron. Lett. 46(25), 1697–1699 (2010)

    Google Scholar 

  25. Y. Liu, Q. Wan, Sidelobe suppression for robust Capon beamforming with mainlobe-to-sidelobe power ratio maximization. IEEE Antennas Wirel. Propag. Lett. 11, 1218–1221 (2012)

    Google Scholar 

  26. T. Lo, J. Litva, Adaptive beam-space nulling of multipath signals. IEEE Trans. Antennas Propag. 38(1), 129–134 (1990)

    Google Scholar 

  27. Z.H. Lu, J.B. Liu, P.G. Liu, A novel method of ambient interferences suppressing for in situ electromagnetic radiated emission test. IEEE Trans. Electromagn. Compat. 54(6), 1205–1215 (2012)

    Google Scholar 

  28. D. Nunn, Suboptimal frequency-domain adaptive antenna processing algorithm for broadband environments. IEE Proc. Commun. Radar Signal Process. 134(4), 341–351 (1987)

    Google Scholar 

  29. X. Pan, C.X. Li, Y.X. Xu, W. Xu, X.Y. Gong, Combination of time-reversal focusing and nulling for detection of small targets in strong reverberation environments. IET Radar Sonar Navig. 8(1), 9–16 (2014)

    Google Scholar 

  30. S.C. Pei, C.C. Yeh, S.C. Chiu, Modified spatial smoothing for coherent jammer suppression without signal cancellation. IEEE Trans. Acoust. Speech Signal Process. 16(3), 412–414 (1988)

    Google Scholar 

  31. R. Qian, M. Sellathurai, D. Wilcox, A study on MVDR beamforming applied to an ESPAR antenna. IEEE Signal Process. Lett. 22(1), 67–70 (2015)

    Google Scholar 

  32. C.D. Richmond, Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing. IEEE Trans. Signal Process. 48(5), 1263–1273 (2000)

    MathSciNet  Google Scholar 

  33. C. Shin, J. Ju, D. Kang, S. Choi, C. Lee, C. Cheong, J. Seo, T.K. Sarkar, M.S. Palma, Implementation of an antenna array for satellite communications with the capability of canceling jammers. IEEE Antennas Propag. Mag. 55(1), 32–48 (2013)

    Google Scholar 

  34. S. Simanapalli, M. Kaveh, Broadband focusing for partially adaptive beamforming. IEEE Trans. Aerosp. Electron. Syst. 30(1), 68–80 (1994)

    Google Scholar 

  35. S.D. Somasundaram, Linearly constrained robust Capon beamforming. IEEE Trans. Signal Process. 60(11), 5845–5856 (2012)

    MathSciNet  MATH  Google Scholar 

  36. H. Song, W.A. Kuperman, W.S. Hodgkiss, P. Gerstoft, J.S. Kim, Null broadening with snapshot-deficient covariance matrices in passive sonar. IEEE J. Oceanic Eng. 28(2), 250–261 (2003)

    Google Scholar 

  37. K. Teitelbaum, A flexible processor for a digital adaptive array radar. IEEE Aerosp. Electron. Syst. Mag. 6(5), 18–22 (1991)

    Google Scholar 

  38. C.J. Tsai, J.F. Yang, Autofocusing technique for adaptive coherent signal-subspace transformation beamformers. IEE Proc. Radar Sonar Navig. 141(1), 30–36 (1994)

    Google Scholar 

  39. B.G. Wahlberg, I.M.Y. Mareels, I. Webster, Experimental and theoretical comparison of some algorithms for beamforming in single receiver adaptive arrays. IEEE Trans. Antennas Propag. 39(1), 21–28 (1991)

    Google Scholar 

  40. Y.Y. Wang, L.C. Lee, S.J. Yang, J.T. Chen, A tree structure one-dimensional based algorithm for estimating the two-dimensional direction of arrivals and its performance analysis. IEEE Trans. Antennas Propag. 56(1), 178–188 (2008)

    MathSciNet  MATH  Google Scholar 

  41. J. Wang, W.X. Sheng, Y.B. Han, X.F. Ma, Adaptive beamforming with compressed sensing for sparse receiving array. IEEE Trans. Aerosp. Electron. Syst. 50(2), 823–833 (2014)

    Google Scholar 

  42. J. Wu, T. Wang, X. Meng, Z. Bao, Clutter suppression for airborne non-sidelooking radar using ERCB-STAP algorithm. IET Radar Sonar Navig. 4(4), 497–506 (2010)

    Google Scholar 

  43. K.B. Yu, Adaptive beamforming for satellite communication with selective earth coverage and jammer nulling capability. IEEE Trans. Signal Process. 44(12), 3162–3166 (1996)

    Google Scholar 

  44. K.B. Yu, D.J. Murrow, Adaptive digital beamforming for angle estimation in jamming. IEEE Trans. Aerosp. Electron. Syst. 37(2), 508–523 (2001)

    Google Scholar 

  45. Z. Zheng, T. Yang, W.-Q. Wang, H.C. So, Robust adaptive beamforming via simplified interference power estimation. IEEE Trans. Aerosp. Electron. Syst. 55(6), 3139–3152 (2019)

    Google Scholar 

  46. Z. Zheng, T. Yang, W.-Q. Wang, S. Zhang, Robust adaptive beamforming via coprime coarray interpolation. Sig. Process. 169(107382), 1–7 (2020)

    Google Scholar 

  47. A.H.E. Zooghby, C.G. Christodoulou, M. Georgiopoulos, Neural network-based adaptive beamforming for one- and two-dimensional antenna arrays. IEEE Trans. Antennas Propag. 46(12), 1891–1893 (1998)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yi Chu for a useful discussion.

Funding

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61401291, in part by the Sichuan Science and Technology Program under Grant 2019YFG0118, and in part by the Chengdu Science and Technology Program under Grant 2019-YF05-00998-SN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kainam Thomas Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Wideband Beamforming

The wideband counterpart of Sect. 2.1’s narrowband \(L \times M\) data matrix \(\mathbf{X}\) is here denoted as \(\mathbf{X}_w\), on which the discrete Fourier transform may be applied to give

$$\begin{aligned} {\tilde{\mathbf{X}}}_w= & {} \mathrm{DFT}\left\{ \mathbf{X}_w\right\} \nonumber \\:= & {} \left[ {\tilde{\mathbf{x}}}_{w,1}, {\tilde{\mathbf{x}}}_{w,2}, \ldots , {\tilde{\mathbf{x}}}_{w,P}\right] , \end{aligned}$$
(15)

where \(\mathrm{DFT}\left\{ \cdot \right\} \) applies the discrete Fourier transform separately on each individual row of the matrix inside the curly brackets. Moreover, P denotes the number of digital-angular-frequency bins that sample \([-\pi ,\pi ]\).

For a bandpass filter at a center frequency of \(f_c\), let \(H_{f_c}(p)\) represent the filter transfer function’s digital Fourier transform at the pth tap, i.e., at a digital angular frequency of \(2 \pi \frac{p}{P}\). Then, define the \(M \times P\) matrix:

$$\begin{aligned} \mathbf{H}_{f_c}= & {} \mathbf{1} \; \left[ H_{f_c}(1), H_{f_c}(2), \ldots , H_{f_c}(P)\right] , \end{aligned}$$
(16)

where \(\mathbf{1}\) symbolizes an M-entry column vector of all ones.

The bandpass-filtered output has a DFT-domain expression of

$$\begin{aligned} {\tilde{\mathbf{Y}}}\left( f_c\right)= & {} {\tilde{\mathbf{X}}}_w \odot \mathbf{H}_{f_c}, \end{aligned}$$
(17)

where \(\odot \) denotes the element-wise product. Its corresponding time-domain expression equals

$$\begin{aligned} \mathbf{X}\left( f_c\right)= & {} \mathrm{IDFT}\left\{ {\tilde{\mathbf{Y}}}(f_c)\right\} , \end{aligned}$$
(18)

where \(\mathrm{IDFT}\left\{ \cdot \right\} \) applies the discrete Fourier transform separately on each row of the matrix inside the curly brackets.

Thus, \(\mathbf{X}(f_c)\) represents the narrowband space-time data at a center frequency of \(f_c\). As the array manifold generally varies with frequency, denote the array manifold by \(\mathbf{a}(\theta , \phi , f_c)\), and construct the “null direction” matrix \(\mathbf{A}_\mathrm{null}(f_c)\) similarly as in (1).

Substituting \(\mathbf{A}_\mathrm{null}\) by \(\mathbf{A}_\mathrm{null}(f_c)\) and \(\mathbf{X}\) by \(\mathbf{X}(f_c)\) in (S1) to (S4) of Sect. 2.2, a narrowband NCMP beamformer \(\mathbf{w}_o (f_c)\) may be realized at \(f_c\).

Lastly, applying the bank of bandpass filters at various center frequencies, wideband NCMP beamforming is realized by combining the bank of beamformers \(\mathbf{w}_o(f_c)\).

Appendix B: The “Linearly Constrained Minimum-Variance” (LCMV) Beamformer

A competitor to the proposed beamformer is the linearly constrained minimum-variance (LCMV) beamformer, which minimizes the beamformer output power (i.e., variance) subject to \(I \le L-1\) number of linear constraints \(\{ \mathbf{c}_1, \mathbf{c}_2, \cdots , \mathbf{c}_{I} \}\) to either pass the desired signals incident from preset “look directions” and/or to reject interference impinging from pre-determined directions. Mathematically, the LCMV beamforming weight vector \((\mathbf{w}_\mathrm{LCMV})\) is obtained by solving this optimization problem [10]:

$$\begin{aligned} \mathbf{w}_\mathrm{LCMV}:= & {} \mathop { \min }_{\mathbf{w}} \; \mathbf{w}^H \mathbf{R} \mathbf{w}, \end{aligned}$$
(19)

subject to

$$\begin{aligned} \mathbf{w}_\mathrm{LCMV}^H \overbrace{\left[ \mathbf{c}_1, \mathbf{c}_2, \cdots , \mathbf{c}_I \right] }^{ \mathbf{C} :=}= & {} \overbrace{\left[ \begin{array}{c} g_1 \\ g_2 \\ \vdots \\ g_{I} \end{array}\right] }^{ \mathbf{g} :=}. \end{aligned}$$
(20)

Here, the \(I \times 1\) vector \(\mathbf{g}_i\) specifies the desired gain for the ith constraint, \(\mathbf{c}_i\).Footnote 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y.I., Wong, K.T. Maximum-Output-Power Beamforming Despite No Prior Information About the Signals-of-Interest Nor Possibly About the Interference. Circuits Syst Signal Process 40, 1802–1817 (2021). https://doi.org/10.1007/s00034-020-01556-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01556-x

Keywords