Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Resolving Two-Dimensional Ambiguity in Subspace-Based Frequency Estimation for Harmonic Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies how to solve a matrix ambiguity to find the fundamental frequency in harmonic signals based on subspace methods. Using the eigenvectors obtained from the autocorrelation matrix of the measured signal, we obtain a model for the estimation of fundamental frequency. By a connection of an invertible matrix ambiguity, the model establishes a link between two matrices whose columns both span the same signal subspace of interest. One of the two matrices comprises the obtained eigenvectors, and the other one is an unknown Vandermonde matrix with a harmonic structure which contains the information of fundamental frequency. The special structure of the estimation model will enable us to construct a linear system so that the matrix ambiguity can be solved to construct the Vandermonde matrix. Thus, the estimate of fundamental frequency can be achieved from the entries of the Vandermonde matrix. In addition, we also discuss an LU-like factorization of the Vandermonde matrix for estimation of the fundamental frequency. Simulation results illustrate the performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

There are two kinds of data used for simulations in this research. The first kind is the synthetic data which can be generated by MATLAB code according to Eq. (1). The second kind is a segment of a song, “The Moon Represents My Heart,” played by violin, which is available from the following hyperlink. https://www.youtube.com/watch?v=sq38zHAfeaA

Notes

  1. R-MUSIC [34] is the abbreviation of Root MUSIC, which is similar to MUSIC in many respects, except that the parameters are determined from the roots of a polynomial formed from the noise subspace.

  2. PHD [20] is the abbreviation of Pisarenko harmonic decomposition. This method is usually regarded as a special case of MUSIC.

References

  1. S. Cecchi, L. Romoli, F. Piazza, Multichannel double-talk detector based on fundamental frequency estimation. IEEE Signal Process. Lett. 23(1), 94–97 (2016)

    Article  Google Scholar 

  2. Y.S. Chen, Y.D. Lin, Novel subspace method for frequencies estimation of two sinusoids with applications to vital signals. IET Signal Proc. 11(9), 1114–1121 (2017)

    Article  Google Scholar 

  3. E. Conte, A. Filippi, S. Tomasin, ML period estimation with application to vital sign monitoring. IEEE Signal Process. Lett. 17(11), 905–908 (2010)

    Article  Google Scholar 

  4. X. Dong, Z. Ding, MIMO channel estimation based on ambiguity resistant filtering and decimated feedback. Proc. IEEE GLOBECOM 5, 2958–2963 (2005)

    Google Scholar 

  5. F. Gao, A. Nallanathan, Resolving multidimensional ambiguity in blind channel estimation of MIMO-FIR systems via block precoding. IEEE Trans. Veh. Technol. 57(1), 11–21 (2008)

    Article  Google Scholar 

  6. R. Gribonval, E. Bacry, Harmonic decomposition of audio signals with matching pursuit. IEEE Trans. Signal Process. 51(1), 101–111 (2003)

    Article  MathSciNet  Google Scholar 

  7. B. Halder, T. Kailath, Efficient estimation of closely spaced sinusoidal frequencies using subspace-based methods. IEEE Signal Process. Lett. 4(2), 49–51 (1997)

    Article  Google Scholar 

  8. J. Huang, X. Zhang, Q. Zhou, E. Song, B. Li, A practical fundamental frequency extraction algorithm for motion parameters estimation of moving targets. IEEE Trans Instrum. Meas. 63(2), 267–276 (2014)

    Article  Google Scholar 

  9. X.G. Kia, W. Su, H. Liu, Filterbank precoders for blind equalization: polynomial ambiguity resistant precoders (PARP). IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(2), 193–209 (2001)

  10. H. Li, P. Stoica, J. Li, Computationally efficient parameter estimation for harmonic sinusoidal signals. Sig. Process. 80(9), 1937–1944 (2000)

    Article  Google Scholar 

  11. H. Liu, X.G. Kia, Precoding techniques for undersampled multireceiver communication systems. IEEE Trans. Signal Process. 48(7), 1853–1863 (2000)

    Article  MathSciNet  Google Scholar 

  12. H. Liu, G. Xu, A subspace method for signature waveform estimation in synchronous CDMA systems. IEEE Trans. Commun. 44(10), 1346–1354 (1996)

    Article  Google Scholar 

  13. K. Mahata, Subspace fitting approaches for frequency estimation using real-valued data. IEEE Trans. Signal Process. 53(8), 3099–3110 (2005)

    Article  MathSciNet  Google Scholar 

  14. K. Mahata, T. Söderström, ESPRIT-like estimation of real-valued sinusoidal frequencies. IEEE Trans. Signal Process. 52(5), 1161–1170 (2004)

    Article  MathSciNet  Google Scholar 

  15. Q. Mayyala, K. Abed-Meraim, A. Zerguine, Structure-based subspace method for multichannel blind system identification. IEEE Signal Process. Lett. 24(8), 1183–1187 (2017)

    Article  Google Scholar 

  16. E. Moulines, P. Duhamel, J.-F. Cardoso, S. Mayrargue, Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Process. 43(2), 516–525 (1995)

    Article  Google Scholar 

  17. H. Oruç, G.M. Phillips, Explicit factorization of the Vandermonde matrix. Linear Algebra Appl. 315, 113–123 (2000)

    Article  MathSciNet  Google Scholar 

  18. P. Palanisamy, S.P. Kar, Estimation of real-valued sinusoidal signal frequencies based on ESPRIT and propagator methods, in Proceedings of IEEE International Conference on Recent Trends in Information Technology, pp. 69–73 (2011)

  19. S.M. Perera, V. Ariyarathna, N. Udayanga, A. Madanayake, G. Wu, L. Belostotski, Y. Wang, S. Mandal, R.J. Cintra, T.S. Rappaport, Wideband N-beam arrays with low-complexity algorithms and mixed-signal integrated circuits. IEEE J. Sel. Topics Signal Process. 4(2), 368–382 (2018)

    Article  Google Scholar 

  20. V.F. Pisarenko, The retrieval of harmonics form a covariance function. Geophys. J. R. Atron. Soc. 33, 347–366 (1973)

    Article  Google Scholar 

  21. L. Romoli, S. Cecchi, P. Peretti, F. Piazza, A mixed decorrelation approach for stereo acoustic echo cancellation based on the estimation of the fundamental frequency. IEEE Trans. Audio Speech Lang. Process. 20(2), 690–698 (2012)

    Article  Google Scholar 

  22. R. Roy, P. Paulraj, K. Kailath, ESPRIT—a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Trans. Audio Speech Signal Process. 34(5), 1340–1342 (1986)

    Article  Google Scholar 

  23. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  24. G. Singh, T.C.H.A. Kumar, V.N.A. Naikan, Speed estimation of rotating machinery using generated harmonics. Comput. Electr. Eng. 72, 420–430 (2018)

  25. T.E. Sterne, The accuracy of least squares solutions. Proc. Natl. Acad. Sci. 20(11) (1934)

  26. P. Stoica, A. Eriksson, MUSIC estimation of real-valued sine-wave frequencies. Sig. Process. 42(2), 139–146 (1995)

    Article  Google Scholar 

  27. C.C. Tu, B. Champagne, Subspace-based blind channel estimation for MIMO-OFDM systems with reduced time averaging. IEEE Trans. Veh. Technol. 59(3), 1539–1544 (2010)

    Article  Google Scholar 

  28. J.W. Tukey, Exploratory Data Analysis (Addison-Wesley, Boston, 1977).

    MATH  Google Scholar 

  29. G. Tzanetakis, P. Cook, Musical genre classification of audio signals. IEEE Trans. Audio Speech Lang Process. 10(5), 293–302 (2002)

    Article  Google Scholar 

  30. A. Upadhyay, M. Sharma, R.B. Pachori, Determination of instantaneous fundamental frequency of speech signals using variational mode decomposition. Comput. Electr. Eng. 62, 630–647 (2017)

    Article  Google Scholar 

  31. S. Visuri, V. Koivunen, Resolving ambiguities in subspace-based blind receiver for MIMO channels, in Proceedings of 36th Asilomar Conference Pacific Grove, CA, vol. 1, pp. 589–593 (2002)

  32. S.L. Yang, On the LU factorization of the Vandermonde matrix. Discrete Appl. Math. 146(1), 102–105 (2005)

    Article  MathSciNet  Google Scholar 

  33. J.Q. Zhang, S.J. Ovaska, X.Z. Gao, An eigenvalue residuum-based criterion for detection of the number of sinusoids in white Gaussian noise, in Proceedings of IEEE Southeastcon pp. 154–158 (1999)

  34. M.D. Zoltowski, G.M. Kautz, S.D. Silverstein, Beam space root-MUSIC. IEEE Trans. Sig. Process. 41(1), 344–364 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Der Lin.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research sponsored by the Ministry of Science and Technology of Taiwan under Grant MOST-107-2221-E-035-046-.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YS., Liao, HE. & Lin, YD. Resolving Two-Dimensional Ambiguity in Subspace-Based Frequency Estimation for Harmonic Signals. Circuits Syst Signal Process 40, 5616–5631 (2021). https://doi.org/10.1007/s00034-021-01736-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01736-3

Keywords