Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

± 0.45 V CMOS Second-Generation Voltage Conveyor Based on Super Source Follower

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A simple ultra-low-voltage realization of second-generation voltage conveyor (VCII) based on the employment of super source follower, as voltage follower, and of current follower is presented in this paper. Full CMOS realization of the proposed VCII contains only ten transistors and two biasing voltages except for DC power supply voltages. Thanks to the super source follower structure, the parasitic resistance of the Z terminal is very low. As for parasitic resistance seen at the Y terminal, it can be reduced with the help of biasing voltage of current follower. Furthermore, its value can be tuned through the biasing voltage for different application circuits. Hence, this structure can be used as voltage-controlled second-generation voltage conveyor (VC-VCII). Post-layout simulation results, based on TSMC 0.18 μm CMOS process parameters, are provided. The main attractive features of the proposed VCII can be described as follows: operation under ± 0.45 V power supply voltages, consisting of only ten transistors, free from the body effect, capability of operating in a low-voltage environment, and parasitic resistance value at Z terminal equal to few Ohms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. G. Barile, G. Ferri, L. Safari, V. Stornelli, A new high drive class-AB FVF-based second generation voltage conveyor. IEEE Trans Circuits Syst. II Express Briefs 67(3), 405–409 (2020). https://doi.org/10.1109/TCSII.2019.2915814

    Article  Google Scholar 

  2. G. Barile, L. Safari, G. Ferri, V. Stornelli, A VCII-based stray insensitive analog interface for differential capacitance sensors. Sensors 19(16), 3545 (2019). https://doi.org/10.3390/s19163545

    Article  Google Scholar 

  3. G. Barile, V. Stornelli, G. Ferri, L. Safari, E. D’Amico, A new rail-to-rail second generation voltage conveyor. Electronics 8(11), 1292 (2019). https://doi.org/10.3390/electronics8111292

    Article  Google Scholar 

  4. T. Dostál, J. Pospíšil, Hybrid models of 3-port immittance convertors and current and voltage conveyors. Electron. Lett. 18(20), 887–888 (1982). https://doi.org/10.1049/el:19820601

    Article  Google Scholar 

  5. G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Current Conveyors (Kluwer Academic publishers, New York, 2003)

    Google Scholar 

  6. G. Ferri, N.C. Guerrini, Noise determination in differential pair-based second generation current conveyors. Analog Integr. Circuits Signal Process. 41(1), 35–46 (2004). https://doi.org/10.1023/B:ALOG.0000038281.75621.91

    Article  Google Scholar 

  7. I.M. Filanovsky, Current conveyor, voltage conveyor, gyrator, in Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257), vol. 1, No. 4 (2001), pp. 314–317. https://doi.org/10.1109/MWSCAS.2001.986176

  8. I.M. Filanovsky, K.A. Stromsmoe, Current-voltage conveyor. Electron. Lett. 17(3), 129–130 (1981). https://doi.org/10.1049/el:19810092

    Article  Google Scholar 

  9. M. Kumngern, U. Torteanchai, and F. Khateb, CMOS Class AB Second Generation Voltage Conveyor, in 2019 IEEE International Circuits and Systems Symposium (ICSyS), vol 4 (2019), pp. 1–4. https://doi.org/10.1109/ICSyS47076.2019.8982420

  10. P. Rani, R. Pandey, Voltage Conveyor based Electronically Tunable Multifunction Biquadractic Filter, in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) (2020), pp. 1110–1113. https://doi.org/10.1109/SPIN48934.2020.9071041

  11. L. Safari, G. Barile, G. Ferri, V. Stornelli, A new low-voltage low-power dual-mode VCII-based SIMO universal filter. Electronics 8(7), 765 (2019). https://doi.org/10.3390/electronics8070765

    Article  Google Scholar 

  12. L. Safari, G. Barile, G. Ferri, V. Stornelli, High performance voltage output filter realizations using second generation voltage conveyor. Int. J. RF Microw. Comput. Eng. 28(9), e21534 (2018). https://doi.org/10.1002/mmce.21534

    Article  Google Scholar 

  13. L. Safari, G. Barile, V. Stornelli, G. Ferri, A new versatile full wave rectifier using voltage conveyors. AEU Int. J. Electron. Commun. 122, 153267 (2020). https://doi.org/10.1016/j.aeue.2020.153267

    Article  Google Scholar 

  14. L. Safari, G. Barile, V. Stornelli, G. Ferri, An overview on the second generation voltage conveyor: features, design and applications. IEEE Trans. Circuits Syst. II Express Briefs 66(4), 547–551 (2019). https://doi.org/10.1109/TCSII.2018.2868744

    Article  Google Scholar 

  15. L. Safari, E. Yuce, S. Minaei, G. Ferri, V. Stornelli, A second-generation voltage conveyor (VCII)—based simulated grounded inductor. Int. J. Circuit Theory Appl. 48(7), 1180–1193 (2020). https://doi.org/10.1002/cta.2770

    Article  Google Scholar 

  16. V. Stornelli, L. Safari, G. Barile, G. Ferri, A new extremely low power temperature insensitive electronically tunable VCII-based grounded capacitance multiplier. IEEE Trans. Circuits Syst. II Express Briefs 68(1), 72–76 (2021). https://doi.org/10.1109/TCSII.2020.3005524

    Article  Google Scholar 

  17. A. Yesil, S. Minaei, New simple transistor realizations of second- generation voltage conveyor. Int. J. Circuit Theory Appl. 48(11), 2023–2038 (2020). https://doi.org/10.1002/cta.2879

    Article  Google Scholar 

  18. E. Yuce, L. Safari, S. Minaei, G. Ferri, V. Stornelli, New mixed-mode second-generation voltage conveyor based first-order all-pass filter. IET Circuits Devices Syst. 14(6), 901–907 (2020). https://doi.org/10.1049/iet-cds.2019.0469

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Istanbul Technical University VLSI Laboratories for the Cadence Design Environment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Yesil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesil, A., Minaei, S. & Psychalinos, C. ± 0.45 V CMOS Second-Generation Voltage Conveyor Based on Super Source Follower. Circuits Syst Signal Process 41, 1819–1833 (2022). https://doi.org/10.1007/s00034-021-01867-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01867-7

Keywords