Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A class of three-weight linear codes over finite fields of odd characteristic

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Applied in communication, data storage system, secret sharing schemes, authentication codes and association schemes, linear codes attract much attention. In this paper, a class of three-weight linear codes is obtained by the defining sets over finite fields of odd characteristic. The parameters and weight distributions of linear codes are determined by the additive characters, multiplicative characters and Gauss sums. Further, most of linear codes obtained are minimal, which can be used to construct secret sharing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ding, C., Yin, J.: Algebraic constructions of constant composition codes. IEEE Trans. Inf. Theory 51(4), 1585–1589 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ding, C., Yang, J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313(4), 434–446 (2013)

    Article  MathSciNet  Google Scholar 

  3. Li, S., Feng, T., Ge, G.: On the weight distribution of cyclic codes with Niho exponents. IEEE Trans. Inf. Theory 60(7), 3903–3912 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ma, C., Zeng, L., Liu, Y., Feng, D., Ding, C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011)

    Article  MathSciNet  Google Scholar 

  5. Vega, G.: The weight distribution of an extended class of reducible cyclic codes. IEEE Trans. Inf. Theory 58(7), 4862–4869 (2012)

    Article  MathSciNet  Google Scholar 

  6. Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of p-ary cyclic codes. Finite Fields Appl. 16, 56–73 (2010)

    Article  MathSciNet  Google Scholar 

  7. Anderson, R., Ding, C., Helleseth, T., Klove, T.: How to build robust shared control systems. Des. Codes Cryptogr. 15(2), 111–124 (1998)

    Article  MathSciNet  Google Scholar 

  8. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005)

    Article  MathSciNet  Google Scholar 

  10. Calderbank, A.R., Goethals, J.M.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984)

    MathSciNet  Google Scholar 

  11. Calderbank, A.R., Kantor, W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MathSciNet  Google Scholar 

  12. Mesnager, S.: Linear codes with few weights from weakly regular bent functions based on a generic construction. Cryptogr. Commun. 9, 71–84 (2017)

    Article  MathSciNet  Google Scholar 

  13. Delsarte, P.: On triple-sum-sets and two or three weights codes. IEEE Trans. Inf. Theory 21(5), 575–576 (1975)

    Article  Google Scholar 

  14. Ding, C., Niederreiter, H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007)

    Article  MathSciNet  Google Scholar 

  15. Ding, C.: A construction of binary linear codes from Boolean functions. Discret. Math. 339, 2288–2303 (2016)

    Article  MathSciNet  Google Scholar 

  16. Xiang, C., Tang, C., Feng, K.: A class of linear codes with a few weights. Cryptogr. Commun. 9(1), 93–116 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ling, F., Wang, Q., Lin, D.: A class of three-weight and five-weight linear codes. Discret. Appl. Math. 241(6), 25–38 (2018)

    MathSciNet  Google Scholar 

  18. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)

    Article  MathSciNet  Google Scholar 

  20. Li, C., Bae, S., Ahn, J., Yang, S., Yao, Z.: Complete weight enumerators of some linear codes and their applications. Des. Codes Cryptogr. 81(1), 153–168 (2016)

    Article  MathSciNet  Google Scholar 

  21. Tang, C., Qi, Y., Huang, D.: Two-weight and three-weight linear codes from square functions. IEEE Commun. Lett. 20(1), 29–32 (2015)

    Article  Google Scholar 

  22. Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yang, S., Yao, Z.: Complete weight enumerators of a family of three-weight linear codes. Des. Codes Cryptogr. 82(3), 663–674 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81, 283–295 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhou, Z., Tang, C., Li, X., Ding, C.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inf. Theory 65(1), 16–27 (2019)

    Article  MathSciNet  Google Scholar 

  26. Li, C., Yue, Q., Fu, F.: A construction of several classes of two-weight and three-weight linear codes. Appl. Algebra Eng. Commun. Comput. 28, 11–30 (2017)

    Article  MathSciNet  Google Scholar 

  27. Jian, G., Lin, Z., Feng, R.: Two-weight and three-weight linear codes based on Weil sums. Finite Fields Appl. 57, 92–107 (2019)

    Article  MathSciNet  Google Scholar 

  28. Hu, Z., Wang, L., Li, N., Zeng, X.: Several classes of linear codes with few weights from the closed butterfly structure. Finite Fields Appl. 76(2), 101926 (2021)

    Article  MathSciNet  Google Scholar 

  29. Lidl, R., Niederreiter, H., Cohn, P.M.: Finite fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  30. Huffman, W., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  31. Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006)

    Article  MathSciNet  Google Scholar 

  32. Heng, Z., Ding, C., Zhou, Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018)

    Article  MathSciNet  Google Scholar 

  33. Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)

    Article  Google Scholar 

  34. Zhu, X., Yang, F.: A class of linear codes with two weights or three weights from some planar functions. J. Appl. Math. Comput. 56, 235–252 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers and the Editor, for their valuable comments and suggestions that improved the presentation and quality of this paper. This paper was supported by Zhejiang provincial Natural Science Foundation of China (No. LY21A010013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, B., Han, G. & Qi, Y. A class of three-weight linear codes over finite fields of odd characteristic. AAECC 35, 359–375 (2024). https://doi.org/10.1007/s00200-022-00554-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-022-00554-7

Keywords

Mathematics Subject Classification