Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB)

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we outline an impulse stochastic control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB) assuming the policyholder is allowed to withdraw funds continuously. We develop a numerical scheme for solving the Hamilton–Jacobi–Bellman (HJB) variational inequality corresponding to the impulse control problem. We prove the convergence of our scheme to the viscosity solution of the continuous withdrawal problem, provided a strong comparison result holds. The scheme can be easily generalized to price discrete withdrawal contracts. Numerical experiments are conducted, which show a region where the optimal control appears to be non-unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadori A.L.: Quasi-variational inequalities with Dirichlet boundary condition related to exit time problems for impulse control. SIAM J. Control Optim. 43(2), 570–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D.(eds) Numerical Methods in Finance, pp. 1–21. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  3. Barles G., Souganidis P.E.: Convergence of approximation schemes for fully nonlinear equations. Asymptotic Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bauer, D., Kling, A., Russ, J.: A universal pricing framework for guaranteed minimum benefits in variable annuities. Working paper, Ulm University

  5. Chen, Z., Forsyth, P.A.: A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB). Technical report, University of Waterloo, July 2007

  6. Chen Z., Forsyth P.A.: A semi-Lagrangian approach for natural gas storage valuation and optimal operation. SIAM J. Sci. Comput. 30(1), 339–368 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cont R., Tankov P.: Financial Modelling with Jump Processes. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  8. Dai, M., Kwok, Y.K., Zong, J.: Guaranteed minimum withdrawal benefit in variable annuities. Math. Finance (2008, in press)

  9. Davis M.H.A., Panas V.G., Zariphopoulou T.: European option pricing with transaction costs. SIAM J. Control Optim. 31(2), 470–493 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Halluin Y., Forsyth P.A., Labahn G.: A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27(1), 315–345 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forsyth, P.A., Labahn, G.: Numerical methods for controlled Hamilton–Jacobi–Bellman PDEs in finance. J. Comput. Finance 11:1–44, 2007/8(Winter)

  12. Ishii K.: Viscosity solutions of nonlinear second order elliptic PDEs associated with impulse control problems II. Funkcialaj Ekvacioj 38, 297–328 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Korn R.: Some applications of impulse control in mathematical finance. Math. Methods Oper. Res. 50, 493–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Milevsky M.A., Salisbury T.S.: Financial valuation of guaranteed minimum withdrawal benefits. Insur. Math. Econ. 38, 21–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Øksendal B., Sulem A.: Optimal consumption and portfolio with both fixed and proportional transaction costs. SIAM J. Control Optim. 40(6), 1765–1790 (2002)

    Article  MathSciNet  Google Scholar 

  16. Pham H.: On some recent aspects of stochastic control and their applications. Probab. Surveys 2, 506–549 (2005)

    Article  MathSciNet  Google Scholar 

  17. Tourin A., Zariphopoulou T.: Numerical schemes for investment models with singular transactions. Comput. Econ. 7, 287–307 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vath V.L., Mnif M., Pham H.: A model of optimal portfolio selection under liquidity risk and price impact. Finance Stochastics 11, 51–90 (2007)

    Article  MATH  Google Scholar 

  19. Wilmott P.: Derivatives: The Theory and Practice of Financial Engineering. John Wiley & Sons, West Sussex (1998)

    Google Scholar 

  20. Windcliff H., Forsyth P.A., Le Roux M.K., Vetzal K.R.: Understanding the behaviour and hedging of segregated funds offering the reset feature. North Am. Actuarial J. 6, 107–125 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Windcliff H.A., Forsyth P.A., Vetzal K.R.: Valuation of segregated funds: shout options with maturity extensions. Insur Math. Econ. 29, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zakamouline V.I.: A unified approach to portfolio optimization with linear transaction costs. Math. Methods Oper. Res. 62, 319–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Forsyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Forsyth, P.A. A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB). Numer. Math. 109, 535–569 (2008). https://doi.org/10.1007/s00211-008-0152-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0152-z

Mathematics Subject Classification (2000)