Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Piecewise affine approximations for functions of bounded variation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

BV functions cannot be approximated well by piecewise constant functions, but this work will show that a good approximation is still possible with (countably) piecewise affine functions. In particular, this approximation is area-strictly close to the original function and the \(\mathrm {L}^1\)-difference between the traces of the original and approximating functions on a substantial part of the mesh can be made arbitrarily small. Necessarily, the mesh needs to be adapted to the singularities of the BV function to be approximated, and consequently, the proof is based on a blow-up argument together with explicit constructions of the mesh. In the case of \(\mathrm {W}^{1,1}\)-Sobolev functions we establish an optimal \({\mathrm {W}}^{1,1}\)-error estimate for approximation by piecewise affine functions on uniform regular triangulations. The piecewise affine functions are standard quasi-interpolants obtained by mollification and Lagrange interpolation on the nodes of triangulations, and the main new contribution here compared to for instance Clément (RAIRO Anal Numér 9(R-2):77–84, 1975) and Verfürth (M2AN Math. Model Numer Anal 33(4):1766–1782, 1999) is that our error estimates are in the \({\mathrm {W}}^{1,1}\)-norm rather than merely the \({\mathrm {L}}^1\)-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alberti, G.: Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A 123, 239–274 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amar, M., De Cicco, V.: A new approximation result for BV-functions. C. R. Math. Acad. Sci. Paris 340, 735–738 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free-Discontinuity Problems. Oxford University Press, Oxford Mathematical Monographs (2000)

    MATH  Google Scholar 

  4. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization. Society for Industrial and Applied Mathematics, MPS-SIAM Series on Optimization (2006)

    Book  MATH  Google Scholar 

  5. Bartels, S.: Total variation minimization with finite elements: convergence and iterative solution, preprint, (2011)

  6. Bechler, P., Devore, R., Kamont, A., Petrova, G., Wojtaszczyk, P.: Greedy wavelet projections are bounded on BV. Trans. Amer. Math. Soc. 359, 619–635 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bildhauer, M.: Convex variational problems, Lecture Notes in Mathematics, vol. 1818. Springer, (2003)

  8. Bourdin, B., Chambolle, A.: Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85, 609–646 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Braides, A., Coscia, A.: The interaction between bulk energy and surface energy in multiple integrals. Proc. Roy. Soc. Edinburgh Sect. A 124, 737–756 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clément, Ph: Approximation by finite element functions using local regularization. RAIRO Analyse Numérique 9(R–2), 77–84 (1975)

    MATH  Google Scholar 

  11. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd ed., Applied Mathematical Sciences, vol. 78. Springer, (2008)

  12. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, 3rd ed., Grundlehren der mathematischen Wissenschaften, vol. 325. Springer, Berlin (2010)

    Book  Google Scholar 

  13. Delladio, S.: Lower semicontinuity and continuity of functions of measures with respect to the strict convergence. Proc. Roy. Soc. Edinburgh Sect. A 119, 265–278 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Faraco, D., Kristensen, J.: Compactness versus regularity in the calculus of variations. Discrete Contin. Dyn. Syst. Ser. B 17, 473–485 (2012)

    MATH  MathSciNet  Google Scholar 

  15. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, (1983)

  16. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hanche-Olsen, H., Holden, H.: The Kolmogorov-Riesz compactness theorem. Expositiones Math

  18. Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in W\(^{1,1}\) and BV. Arch. Ration. Mech. Anal. 197, 539–598 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kristensen, J., Rindler, F.: Relaxation of signed integral functionals in BV. Calc. Var. Partial Differential Equations 37, 29–62 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kristensen, J., Rindler, F.: Erratum to Characterization of generalized gradient Young measures generated by sequences in W\(^{1,1}\) and BV. Arch. Ration. Mech. Anal. 203, 693–700 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations, 2nd ed., Grundlehren der mathematischen Wissenschaften, vol. 342. Springer, (2011)

  22. Moise, E.E.: Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics, vol. 47. Springer, (1977)

  23. Morse, A.P.: Perfect blankets. Trans. Amer. Math. Soc. 61, 418–442 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  24. Quentin de Gromard, T.: Strong approximation of sets in \({\rm BV}(\Omega )\). Proc. Roy. Soc. Edinburgh Sect. A 138, 1291–1312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Reshetnyak, Y.G.: Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9, 1039–1045 (1968)

    Article  Google Scholar 

  26. Rindler, F.: Lower semicontinuity and Young measures in BV without Alberti’s Rank-One Theorem. Adv. Calc. Var. 5, 127–159 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schmidt, T.: Strict interior approximation of sets of finite perimeter and functions of bounded variation, Proc. Amer. Math. Soc., to appear

  28. Spector, D.: Simple proofs of some results of Reshetnyak. Proc. Amer. Math. Soc. 139(5), 1681–1690 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Verfürth, R.: Error estimates for some quasi-interpolant operators, M2AN Math. Model. Numer. Anal. 33(4), 1766–1782 (1999)

    Google Scholar 

  30. Waldron, S.: Multipoint Taylor formulae. Numer. Math. 80, 461–494 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wojtaszczyk, P.: Projections and non-linear approximation in the space \({\rm BV}({\mathbb{R}}^d)\). Proc. London Math. Soc. 87, 471–497 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nicola Fusco and Endre Süli for discussions related to the subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kristensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristensen, J., Rindler, F. Piecewise affine approximations for functions of bounded variation. Numer. Math. 132, 329–346 (2016). https://doi.org/10.1007/s00211-015-0721-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0721-x

Mathematics Subject Classification