Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thermodynamic Formalism for Random Weighted Covering Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop for the first time a quenched thermodynamic formalism for random dynamical systems generated by countably branched, piecewise-monotone mappings of the interval that satisfy a random covering condition. Given a random contracting potential \(\varphi \) (in the sense of Liverani–Saussol–Vaienti), we prove there exists a unique random conformal measure \(\nu _\varphi \) and unique random equilibrium state \(\mu _\varphi \). Further, we prove quasi-compactness of the associated transfer operator cocycle and exponential decay of correlations for \(\mu _\varphi \). Our random driving is generated by an invertible, ergodic, measure-preserving transformation \(\sigma \) on a probability space \((\Omega ,{\mathscr {F}},m)\); for each \(\omega \in \Omega \) we associate a piecewise-monotone, surjective map \(T_\omega :I\rightarrow I\). We consider general potentials \(\varphi _\omega :I\rightarrow {\mathbb {R}}\cup \{-\infty \}\) such that the weight function \(g_\omega =e^{\varphi _\omega }\) is of bounded variation. We provide several examples of our general theory. In particular, our results apply to new examples of linear and non-linear systems including random \(\beta \)-transformations, randomly translated random \(\beta \)-transformations, countably branched random Gauss–Renyi maps, random non-uniformly expanding maps (such as intermittent maps and maps with contracting branches) composed with expanding maps, and a large class of random Lasota–Yorke maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Our theory works equally well if I is taken to be an uncountable, totally ordered, order-complete set as in [33]. In this setting the order topology makes I compact. We choose to work under the assumption that I is a compact interval in \({\mathbb {R}}\) for ease of exposition.

  2. In [33] they consider the case \({\hat{\alpha }}=4\) and \({\hat{\gamma }}=2\).

  3. Note that these limits exist by the subadditive ergodic theorem due to the submultiplicativity and supermultiplicativity of the respective sequences \(\{\omega \mapsto \Vert g_\omega ^{(n)}\Vert _\infty \}_{n\in {\mathbb {N}}}\) and \( \left\{ \omega \mapsto \inf {\mathcal {L}}_\omega ^n \mathbb {1}_\omega \right\} _{n\in {\mathbb {N}}}\). Furthermore, the limits are constant m-a.e. and the left-hand limit may be equal to \(-\infty \).

  4. If \(a\in X_\omega \) we may take \(\alpha _a=a=\beta _a\).

  5. One could prove the existence of such a function in a similar manner to Urysohn’s Lemma to show that for \(x<y\) there exists a continuous, increasing function (hence BV) from [xy] onto [0, 1].

  6. 55 is chosen because \({1}/{\log 55}<{1}/{4}\), which will be useful in Sect. 7.

  7. Our final estimate of Lemma 7.5 differs from Buzzi’s [10, Lemma 3.4] because of a term in the sum that was overlooked. The problem can be corrected by carefully choosing \(R_*=R_{a_0}\) and then by defining \(a_*\ge a_0\) in terms of \(R_*\) as we have done here.

  8. Here the number \(\Sigma \) is playing the same role as the number \(K_{n-{\hat{y}}_*}\) from Lemma 7.6.

  9. Note that if \(\tau _0\in \Omega _G\), in which case we have \(\tau _0=\tau _0^*\), then \(\Sigma _I=0\) and \(\Sigma =\Sigma _+{\hat{r}}_{\tau _0}(n)\).

  10. Indeed, one can see this by considering the continuous linear functional \(\Lambda _\omega \) which is equivalent to \(\nu _\omega \) on \({\mathrm{BV}}(I)\). As \(f_{\omega ,n}\rightarrow q_{\omega ,f}\) we must have \(1=\Lambda _{\omega }(f_{\omega ,n})\rightarrow \Lambda (q_{\omega ,f})=\nu _\omega (q_{\omega ,f})=1\).

  11. Without loss of generality, we assume the partitions on which \(\beta \) and \(\Phi \) are constant coincide.

  12. Note that this condition is equivalent with the assumption that \(\int _\Omega \log \left\lceil \beta _\omega \right\rceil \, dm<\infty \).

  13. The maps are still required to be onto, however some branches may be contracting.

  14. The same argument given in Remark 13.14 allows us to replace \(\beta \ge 5\) with \(\beta \ge 2\) at the expense of taking \(N_*=3\).

References

  1. Aimino, R., Huyi, H., Nicol, M., Török, A., Vaienti, S.: Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete Contin. Dyn. Syst. A 35(3), 793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aimino, R., Rousseau, J.: Concentration inequalities for sequential dynamical systems of the unit interval. Ergod. Theory Dyn. Syst. 36(8), 2384–2407 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbieto, A., Matheus, C.: Fast decay of correlations of equilibrium states of open classes of non-uniformly expanding maps and potentials. arXiv:math/0603629 (2006)

  4. Atnip, J., Urbański, M.: Critically finite random maps of an interval. Discrete Contin. Dyn. Syst. A 40(8), 4839 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1940)

    MATH  Google Scholar 

  6. Bogenschütz, T.: Equilibrium states for random dynamical systems. Ph.D. thesis, Institut für Dynamische Systeme, Universität Bremen (1993)

  7. Bogenschütz, T.: Entropy, pressure, and a variational principle for random dynamical systems. Random Comput. Dyn. 1(1), 99–116 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Bogenschütz, T., Gundlach, V.M.: Ruelle’s transfer operator for random subshifts of finite type. Ergod. Th. Dyn. Syst. 15, 413–447 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  10. Buzzi, J.: Exponential decay of correlations for random Lasota–Yorke maps. Commun. Math. Phys. 208(1), 25–54 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergodic Theory Dyn. Syst. 23(5), 1383–1400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castro, A., Varandas, P.: Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability. Annales de l’Institut Henri Poincare (C) Non Linear Anal. 30(2), 225–249 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Conze, J.-P., Raugi, A.: Limit theorems for sequential expanding dynamical systems on \([0,1]\). In: Ergodic Theory and Related Fields, Volume 430 of Contemporary Mathematics, pp. 89–121. American Mathematical Society, Providence, RI (2007)

  14. Crauel, H.: Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs. Taylor & Francis, London (2002)

    Book  MATH  Google Scholar 

  15. Denker, M., Keller, G., Urbański, M.: On the uniqueness of equilibrium states for piecewise monotone mappings. Stud. Math. 97(1), 27–36 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Denker, M., Kifer, Y., Stadlbauer, M.: Thermodynamic formalism for random countable Markov shifts. Discrete Contin. Dyn. Syst. Ser. A 22(1–2), 131–164 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Denker, M., Urbański, M.: On the existence of conformal measures. Trans. Am. Math. Soc. 328(2), 563–587 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dragičević, D., Froyland, G., González-Tokman, C., et al.: A spectral approach for quenched limit theorems for random expanding dynamical systems. Commun. Math. Phys. 360, 1121–1187 (2018)

  19. Dragičević, D., Froyland, G., González-Tokman, C., Vaienti, S.: Almost sure invariance principle for random piecewise expanding maps. Nonlinearity 31(5), 2252–2280 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ferrero, P., Schmitt, B.: Produits aléatoires d’opérateurs matrices de transfert. Probab. Theory Relat. Fields 79(2), 227–248 (1988)

    Article  MATH  Google Scholar 

  21. Froyland, G., Lloyd, S., Quas, A.: A semi-invertible Oseledets theorem with applications to transfer operator cocycles. Discrete Contin. Dyn. Syst. 33(9), 3835–3860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. González-Tokman, C., Quas, A.: Stability and collapse of the Lyapunov spectrum for Perron–Frobenius operator cocycles. J. Eur. Math. Soc. 23, 3419–3457 (2021). https://doi.org/10.4171/JEMS/1096

  23. Gundlach, V.M.: Thermodynamic formalism for random subshifts of finite type (1996)

  24. Haydn, N., Nicol, M., Török, A., Vaienti, S.: Almost sure invariance principle for sequential and non-stationary dynamical systems. Trans. Am. Math. Soc. 369(8), 5293–5316 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hofbauer, F., Keller, G.: Equilibrium states for piecewise monotonic transformations. Ergod. Theory Dyn. Syst. 2(1), 23–43 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horan, J.: Asymptotics for the second-largest Lyapunov exponent for some Perron–Frobenius operator cocycles (2019). arXiv:1910.12112

  27. Kalle, C., Kempton, T., Verbitskiy, E.: The random continued fraction transformation. Nonlinearity 30(3), 1182–1203 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Khanin, K., Kifer, Y.: Thermodynamic formalism for random transformations and statistical mechanics. In: Sinai’s Moscow Seminar on Dynamical Systems, Volume 171 of American Mathematical Society Translated Series 2, pp. 107–140. American Mathematical Society, Providence, RI (1996)

  29. Kifer, Y.: Equilibrium states for random expanding transformations. Random Comput. Dyn. 1(1), 1–31 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc. 2(3), 568–576 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liverani, C.: Decay of correlations. Ann. Math. 142(2), 239–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liverani, C.: Decay of correlations for piecewise expanding maps. J. Stat. Phys. 78(3), 1111–1129 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Liverani, C., Saussol, B., Vaienti, S.: Conformal measure and decay of correlation for covering weighted systems. Ergod. Theory Dyn. Syst. 18(6), 1399–1420 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19(3), 671–685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Manneville, P.: Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. J. Physique 41(11), 1235–1243 (1980)

    Article  MathSciNet  Google Scholar 

  36. Mauldin, R.D., Urbański, M.: Graph Directed Markov Systems Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  37. Mayer, D.H.: Approach to equilibrium for locally expanding maps in \({\mathbf{R}}^k\). Commun. Math. Phys. 95(1), 1–15 (1984)

    Article  ADS  MATH  Google Scholar 

  38. Mayer, V., Urbański, M.: Countable alphabet random subhifts of finite type with weakly positive transfer operator. J. Stat. Phys. 160(5), 1405–1431 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Mayer, V., Skorulski, B., Urbański, M.: Random Distance Expanding Mappings, Thermodynamic Formalism, Gibbs Measures, and Fractal Geometry Lecture Notes in Math 2036. Springer, Berlin (2011)

  40. Mayer, V., Urbański, M.: Random dynamics of transcendental functions. J. d’Analyse Mathématique 134(1), 201–235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nicol, M., Török, A., Vaienti, S.: Central limit theorems for sequential and random intermittent dynamical systems. Ergod. Theory Dyn. Syst. 38(3), 1127–1153 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Parry, W.: On the \(\upbeta \)-expansions of real numbers. Acta Mathematica Academiae Scientiarum Hungarica 11(3), 401–416 (1960)

    Article  MathSciNet  Google Scholar 

  43. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74(2), 189–197 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  44. Przytycki, F., Urbański, M.: Conformal fractals: ergodic theory methods, vol. 371. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  45. Roy, M., Urbański, M.: Random graph directed Markov systems. Discrete Contin. Dyn. Syst. 30(1), 261–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruelle, D.: Thermodynamic Formalism, Volume 5 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co, Reading (1978)

    Google Scholar 

  47. Rychlik, M.: Bounded variation and invariant measures. Stud. Math. 76, 69–80 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simmons, D., Urbański, M.: Relative equilibrium states and dimensions of fiberwise invariant measures for random distance expanding maps. Stoch. Dyn. 14, 1350015 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stadlbauer, M.: On random topological markov chains with big images and preimages. Stoch. Dyn. 10(01), 77–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stadlbauer, M.: Coupling methods for random topological Markov chains. Ergod. Theory Dyn. Syst. 37(3), 971–994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stadlbauer, M., Suzuki, S., Varandas, P.: Thermodynamic formalism for random non-uniformly expanding maps. Commun. Math. Phys. 385, 369–427 (2021)

  52. Stadlbauer, M., Varandas, P., Zhang, X.: Quenched and annealed equilibrium states for random Ruelle expanding maps and applications (2020). arXiv:2004.04763

  53. Urbański, M., Zdunik, A.: Random non-hyperbolic exponential maps (2018). arXiv:1805.08050

  54. Varandas, P., Viana, M.: Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Annales de l’IHP Analyse non linéaire 27(2), 555–593 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.A., G.F., and C.G.-T. thank the Centro de Giorgi in Pisa and CIRM in Luminy for their support and hospitality. J.A. is supported by an ARC Discovery project and thanks the School of Mathematics and Physics at the University of Queensland for their hospitality. G.F., C.G.-T., and S.V. are partially supported by an ARC Discovery Project. S.V. thanks the Laboratoire International Associé LIA LYSM, the INdAM (Italy), the UMI-CNRS 3483, Laboratoire Fibonacci (Pisa) where this work has been completed under a CNRS delegation and the Centro de Giorgi in Pisa for various supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Atnip.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atnip, J., Froyland, G., González-Tokman, C. et al. Thermodynamic Formalism for Random Weighted Covering Systems. Commun. Math. Phys. 386, 819–902 (2021). https://doi.org/10.1007/s00220-021-04156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04156-1