Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Procedural and interactive icicle modeling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Icicle formation is a complex phenomenon which makes it difficult to model for computer graphics applications. The methods commonly used in computer graphics to model icicles provide only minimal control over the results and require several minutes or even hours of computation. This paper proposes a procedural approach allowing interactive modeling, which is broken down into four stages. The first computes the water motion on the surface; the second determines where the water drips; the third computes the trajectories of the icicles growth, and the fourth creates the surface. In addition, the approach allows the creation of glaze ice. The results are not only realistic but also rapidly computed. This approach provides a significant increase in control over results and computation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dorsey, J., Pedersen, H.K., Hanrahan, P.: Flow and changes in appearance. In: Proc. of 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 411–420. ACM, New York (1996)

    Chapter  Google Scholar 

  2. Fournier, P., Habibi, A., Poulin, P.: Simulating the flow of liquid droplets. In: Proc. Graphics Interface 98, pp. 133–42. Canadian Inf. Process. Soc., Toronto (1998)

    Google Scholar 

  3. Kharitonsky, D., Gonczarowski, J.: A physically based model for icicle growth. Vis. Comput. 10, 88–100 (1993). doi:10.1007/BF01901945

    Article  Google Scholar 

  4. Kim, T., Adalsteinsson, D., Lin, M.C.: Modeling ice dynamics as a thin-film Stefan problem. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’06, pp. 167–176. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  5. Kim, T., Henson, M., Lin, M.C.: A hybrid algorithm for modeling ice formation. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pp. 305–314. Eurographics Association, Aire-la-Ville (2004). doi:10.1145/1028523.1028564

    Chapter  Google Scholar 

  6. Maeno, N., Makkonen, L., Nishimura, K., Kosugi, K., Takahashi, T.: Growth rates of icicles. J. Glaciol. 40, 319–326 (1994)

    Google Scholar 

  7. Makkonen, L.: A model of icicle growth. J. Glaciol. 34(116) (1988)

  8. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990)

    MATH  Google Scholar 

  9. Szilder, K., Lozowski, E.: An analytical model of icicle growth. Ann. Glaciol. 19, 141–145 (1994)

    Google Scholar 

  10. Tong, R., Kaneda, K., Yamashita, H.: A volume-preserving approach for modeling and animating water flows generated by metaballs. Vis. Comput. 18(8), 469–480 (2002)

    Article  Google Scholar 

  11. Wang, H., Mucha, P.J., Turk, G.: Water drops on surfaces. ACM Trans. Graph. 24, 921–929 (2005). doi:10.1145/1073204.1073284

    Article  Google Scholar 

  12. Yu, Y.J., Jung, H.Y., Cho, H.G.: A new water droplet model using metaball in the gravitational field. Comput. Graph. 23(2), 213–222 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Paquette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnon, J., Paquette, E. Procedural and interactive icicle modeling. Vis Comput 27, 451–461 (2011). https://doi.org/10.1007/s00371-011-0584-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0584-9

Keywords