Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Automatic filter coefficient calculation in lifting scheme wavelet transform for lossless image compression

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a new method for automatic filter coefficient calculation in lifting scheme wavelet transform for image lossless compression is proposed. Actually, there is no specific rule for setting filter coefficients (a, b). Therefore, this work proposes an automatic method to calculate the filter coefficients depending on the spectral analysis of each image. Also, filter coefficients are determined for five decomposition levels and for each quadrant through applying the discrete wavelet transform in the lossless image compression problem. Spectral patterns are computed and fixed into small length vectors for building different wavelet decomposition levels; these vectors are automatically computed using a 1-NN classifier. Experimental results over standard images show that calculating the wavelet filter coefficients using the proposed method generates higher compression rates (in entropy and bitstream values) against standard wavelet and linear prediction filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bovik, A.C.: Handbook of Image and Video Processing. Academic Press, Amsterdam (2005)

    MATH  Google Scholar 

  2. Cánovas, R., Moffat, A., Turpin, A.: Lossy compression of quality scores in genomic data. Bioinformatics 30, 2130–2136 (2014)

    Article  Google Scholar 

  3. Hernández-Cabronero, M., Blanes, I., Pinho, A.J., Marcellin, M.W., Serra-Sagristà, J.: Analysis-driven lossy compression of DNA microarray images. IEEE Trans. Med. Imaging 35, 654–664 (2016)

    Article  Google Scholar 

  4. He, S., Zhang, M., Tian, W., Zhang, J., Ding, F.: A parameterization power data compress using strong trace filter and dynamics. IEEE Trans. Instrum. Meas. 64, 2636–2645 (2015)

    Article  Google Scholar 

  5. Wang, S., Zhang, G., Sheu, P., Hayakawa, M., Shigematsu, H., Kitazawa, A.: Lossy graph data reduction. Int. J. Semant. Comput. 12, 425–456 (2018)

    Article  Google Scholar 

  6. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-LSB data embedding. IEEE Trans. Image Process. 14, 253–266 (2005)

    Article  Google Scholar 

  7. Alberti, G., Bolcskei, H., De Lellis, C., Koliander, G., Riegler, E.: Lossless analog compression. IEEE Trans. Inf. Theory 9448, 1 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Liu, W.: New method for image denoising while keeping edge information. In: Proceedings of the 2009 2nd Int. Congr. Image Signal Process. CISP’09, pp. 1–5 (2009)

  9. Wang, C., Yang, J.: Poisson noise removal of images on graphs using tight wavelet frames. Vis. Comput. 34, 1357–1369 (2018)

    Article  Google Scholar 

  10. Strickland, R.N., Hahn, H.I.: Wavelet transform methods for object detection and recovery. IEEE Trans. Image Process. 6, 724–735 (1997)

    Article  Google Scholar 

  11. He, L., Wang, Y., Xiang, Z.: Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients. Vis. Comput. 35, 151–174 (2019)

    Article  Google Scholar 

  12. Chen, Q., Hu, Q.W., Lv, B., Lian, P.P.: Adaptive integer wavelet filter design for image compression. In: International Conference on Automatic Control and Artificial Intelligence (ACAI 2012). pp. 359–362. Institution of Engineering and Technology (2012)

  13. Motta, G., Storer, J.A., Carpentieri, B.: Lossless image coding via adaptive linear prediction and classification. Proc. IEEE 88, 1790–1796 (2000)

    Article  Google Scholar 

  14. Rao, R.M., Chapa, J.O.: Algorithms for designing wavelets to match a specified signal. IEEE Trans. Signal Process. 48, 3395–3406 (2000)

    Article  MathSciNet  Google Scholar 

  15. Thielemann, H.: Optimally matched wavelets. In: PAMM, vol. 3 (2004)

  16. Kaaniche, M., Benazza-Benyahia, A., Pesquet-Popescu, B., Pesquet, J.C.: Non-separable lifting scheme with adaptive update step for still and stereo image coding. Signal Process. 91, 2767–2782 (2011)

    Article  Google Scholar 

  17. Deriche, M., Qureshi, M.A., Beghdadi, A.: An image compression algorithm using reordered wavelet coefficients with compressive sensing. In: 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 498–503. IEEE (2015)

  18. Pogrebnyak, O., Hernández-Bautista, I.: Lifting filters adjustment for lossless image compression applications. In: Bayro-Corrochano, E., Hancock, E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications SE, vol. 120, pp. 990–997. Springer, Berlin (2014)

    Chapter  Google Scholar 

  19. Hernández Bautista, I., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Camacho-Nieto, O., Pogrebnyak, O.: Adjustment of wavelet filters for image compression using artificial intelligence. Polibits 53, 23–30 (2016)

    Article  Google Scholar 

  20. Sweldens, W.: Lifting scheme: a new philosophy in biorthogonal wavelet constructions. In: Laine, A.F., Unser, M.A. (eds.) SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, pp. 68–79. International Society for Optics and Photonics (1995)

  21. Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.-L.Y.B.-L.: Lossless image compression using integer to integer wavelet transforms. In: Proceedings of the International Conference on Image Processing, vol. 1, pp. 596–599 (1997)

  22. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4, 247–269 (1998)

    Article  MathSciNet  Google Scholar 

  23. Mallat, S.G.: Zhifeng Zhang: matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  Google Scholar 

  24. Aldroubi, A., Unser, M.: Families of multiresolution and wavelet spaces with optimal properties. Numer. Funct. Anal. Optim. 14, 417–446 (1993)

    Article  MathSciNet  Google Scholar 

  25. Gupta, A., Joshi, S.D., Prasad, S.: A new approach for estimation of statistically matched wavelet. IEEE Trans. Signal Process. 53, 1778–1793 (2005)

    Article  MathSciNet  Google Scholar 

  26. Thielemann, H.: Adaptive construction of wavelets for image compression. Diploma thesis in computer science. Science (80-.). (2001)

  27. Thielemann, H.: Mathematical notation and the use of functions. Int. Conf. Ind. Appl. Math. 7, 2170001–2170002 (2007). https://doi.org/10.1002/pamm.200700988

    Article  Google Scholar 

  28. Li, H., Liu, G., Zhang, Z.: Optimization of integer wavelet transforms based on difference correlation structures. IEEE Trans. Image Process. 14, 1831–1847 (2005)

    Article  MathSciNet  Google Scholar 

  29. Kitanovski, V., Kseneman, M., Gleich, D., Taskovski, D.: Adaptive lifting integer wavelet transform for lossless image compression. In: IWSSIP 2008: 15th International Conference on Systems, Signals and Image Processing, pp. 105–108 (2008)

  30. Boulgouris, N.V., Tzovaras, D., Strintzis, M.G.: Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding. IEEE Trans. Image Process. 10, 1–14 (2001)

    Article  Google Scholar 

  31. Grandits, T., Pock, T.: Optimizing wavelet bases for sparser representations. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 249–262. Springer, Berlin (2018)

    Chapter  Google Scholar 

  32. Kaaniche, M., Pesquet-Popescu, B., Benazza-Benyahia, A., Pesquet, J.-C.: Adaptive lifting scheme with sparse criteria for image coding. EURASIP J. Adv. Signal Process. 2012, 10 (2012)

    Article  Google Scholar 

  33. Ahanonu, E., Marcellin, M., Bilgin, A.: Lossless image compression using reversible integer wavelet transforms and convolutional neural networks. In: 2018 Data Compression Conference, pp. 395–395. IEEE (2018)

  34. Schiopu, I., Munteanu, A.: Deep-learning based lossless image coding. IEEE Trans. Circuits Syst. Video Technol. (2018). https://doi.org/10.1109/TCSVT.2019.2909821

    Article  Google Scholar 

  35. Pogrebnyak, O., Hernández-Bautista, I., Camacho Nieto, O., Manrique Ramírez, P.: Wavelet filter adjusting for image lossless compression using pattern recognition. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 221–230 (2014)

  36. Servetto, S.D., Ramchandran, K., Orchard, M.T.: Image coding based on a morphological representation of wavelet data. IEEE Trans. Image Process. 8, 1161–1174 (1999)

    Article  Google Scholar 

  37. Oktem, L., Oktem, R., Astola, J.: Hierarchical enumerative coding of DCT coefficients. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing Proceedings (Cat. No.00CH37100), vol. 6, pp. 2043–2046 (2000)

  38. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3, 186–200 (1996)

    Article  MathSciNet  Google Scholar 

  39. Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5, 332–369 (1998)

    Article  MathSciNet  Google Scholar 

  40. Yoo, H.Y.H., Jeong, J.J.J.: A unified framework for wavelet transforms based on the lifting scheme. Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), vol. 3, pp. 792–795 (2001)

  41. Pogrebnyak, O., Manrique Ramirez, P.: Adaptive wavelet transform algorithm for image compression applications. In: Applications of Digital Image Processing XXVI, pp. 623–630 (2003)

  42. Seiffert, U.: ANNIE-artificial neural network-based image encoder. Neurocomputing 125, 229–235 (2014)

    Article  Google Scholar 

  43. Martchenko, A., Deng, G.: Bayesian predictor combination for lossless image compression. IEEE Trans. Image Process. 22, 5263–5270 (2013)

    Article  Google Scholar 

  44. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  45. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3462 (1993)

    Article  Google Scholar 

  46. Said, A., Pearlman, W.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  47. California Institute of Technology: Computational vision. www.vision.caltech.edu. Accessed 3 Dec 2018

  48. hlevkin: http://www.hlevkin.com/. Accessed 3 Dec 2018

  49. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New-York (2001). ISBN 978-0-471-05669-0

    MATH  Google Scholar 

  50. Granada, U. de: No title. http://decsai.ugr.es/cvg/CG/base.htm. Accessed 3 Dec 2018

  51. University, C.M.: Vision and autonomous systems. http://www.cs.cmu.edu/afs/cs/project/vision/vasc/idb/www/html_permanent/index.html. Accessed 4 Jun 2018

Download references

Acknowledgments

The authors of this work want to thank the following organizations for their support: Cátedra-CONACyT, INAOE, and National Polytechnic Institute, México.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors take part in the discussion of the work described in this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ignacio Hernández-Bautista.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Bautista, I., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F. et al. Automatic filter coefficient calculation in lifting scheme wavelet transform for lossless image compression. Vis Comput 37, 957–972 (2021). https://doi.org/10.1007/s00371-020-01846-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01846-0

Keywords