Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A competent image denoising method based on structural information extraction

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The critical problem of image denoising is removing noise while remaining the complex structures of the restored image as much as possible. Therefore, the reconstruction of image structures influences the quality of denoised images. In this paper, we first develop a structure extraction model that detects image structure efficiently. Then the model is applied to stack the similar patch group matrix. Different from other patch grouping methods, this model focuses on the image structure similarity among patches. After this set, we introduce a novel denoising model that incorporates low-rank and kernel Wiener filter priors based on the structure extraction model. The new model takes full advantage of the corresponding patches and remains the fine details as much as possible. Furthermore, the proposed method can reduce the artifacts which are inevitable in most denoising methods. Finally, the optimization problem is solved by alternating direction method multipliers. Experimental results demonstrate the out-performance of the proposed method concerning numerical and visual measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morikawa, C., Kobayashi, M., Satoh, M., et al.: Image and video processing on mobile devices: a survey. Vis. Comput. 37, 2931–2949 (2021). https://doi.org/10.1007/s00371-021-02200-8

    Article  Google Scholar 

  2. Antoni, B., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multisc. Model. Simul. 4(2), 490–530 (2005). https://doi.org/10.1137/040616024

    Article  MathSciNet  MATH  Google Scholar 

  3. Fan, L., Zhang, F., Fan, H., et al.: Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art 2(1), 1–12 (2019). https://doi.org/10.9756/sijcsea/v3i1/03020060201

    Article  Google Scholar 

  4. Carlo, T., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, pp. 839–846. https://doi.org/10.1109/ICCV.1998.710815

  5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  6. Stanley, O., Martin, B., Donald, G., et al.: An iterative regularization method for total variation-based image restoration. Multisc. Model. Simul. 4(2), 460–489 (2005). https://doi.org/10.1137/040605412

    Article  MathSciNet  MATH  Google Scholar 

  7. Antoni, B., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp. 60–65. https://doi.org/10.1109/CVPR.2005.38

  8. Kostadin, D., Alessandro, F., Vladimir, K., et al.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/tip.2007.901238

    Article  MathSciNet  Google Scholar 

  9. Shuhang, G., Lei, Z., Wangmeng, Z., et al.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

  10. Fan, L., Li, X., Guo, Q., et al.: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection. Sci. China Inf. Sci. 61(4), 049101–049111 (2018). https://doi.org/10.1007/s11432-017-9207-9

    Article  Google Scholar 

  11. Julien, M., Francis, B., Jean, P., et al.: Non-local sparse models for image restoration. In: IEEE 12th International Conference on Computer Vision, pp. 2272–2279. https://doi.org/10.1109/ICCV.2009.5459452

  12. Zhou, M., Chen, H., Paisley, J., et al.: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans. Image Process. 21(1), 130–144 (2012). https://doi.org/10.1109/tip.2011.2160072

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, W., Zhang, L., Shi, G., et al.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013). https://doi.org/10.1109/tip.2012.2235847

    Article  MathSciNet  MATH  Google Scholar 

  14. Zuo, W., Zhang, L., Song, C., et al.: Gradient histogram estimation and preservation for texture enhanced image denoising. IEEE Trans. Image Process. 23(6), 2459–2472 (2014). https://doi.org/10.1109/cvpr.2013.159

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, W., Shi, G., Ma, Y., et al.: Image restoration via simultaneous sparse coding: where structured sparsity meets gaussian scale mixture. Int. J. Comput. Vis. 114(2), 217 (2015). https://doi.org/10.1007/s11263-015-0808-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Z., Yu, L., Sun, H.: Image restoration via bayesian dictionary learning with nonlocal structured beta process. J. Vis. Commun. Image Represent. 52, 159–169 (2018). https://doi.org/10.1016/j.jvcir.2018.02.011

    Article  Google Scholar 

  17. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with bm3d? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399. https://doi.org/10.1109/CVPR.2012.6247952

  18. Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/tip.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, S., Zhang, L., Yan, L.: Nonlocal spectral prior model for low-level vision. In: Asian Conference on Computer Vision, Berlin, Heidelberg, pp. 231–244. https://doi.org/10.1007/978-3-642-37431-9_18

  20. Nathan, S., Jaakkola, T.: Weighted low-rank approximations. In: Proceedings of the Twentieth International Conference on Machine Learning: 720–727 (2003).

  21. Ke, Q., Takeo, K.: Robust l1 norm factorization in the presence of outliers and missing data by alternative convex programming. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 1, 739–746 (2005).

  22. Anders, E., Van Den Anton, H.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the l1 norm. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 771–778. https://doi.org/10.1109/CVPR.2010.5540139

  23. Guo, Q., Zhang, C., Zhang, Y., et al.: An efficient svd-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2016). https://doi.org/10.35940/ijeat.f1349.0986s319

    Article  Google Scholar 

  24. Maryam, F., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the 2001 American Control Conference 6, 4734–4739 (2001).

  25. Wright, J., Ganesh, A., Rao, S., et al.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems 22, 2080–2088 (2009).

  26. Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010). https://doi.org/10.4236/am.2014.521322

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, G., Lin, Z.,Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on International Conference on Machine Learning: 663–670 (2010).

  28. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. Adv. Neural. Inf. Process. Syst. 24, 612–620 (2011). https://doi.org/10.1007/s11263-013-0611-6

    Article  Google Scholar 

  29. Liu, R., Lin, Z., De la Torre, F., et al.: Fixed-rank representation for unsupervised visual learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 598–605. https://doi.org/10.1109/CVPR.2012.6247726

  30. Donoho, D.L., Matan, G., Andrea, M.: The phase transition of matrix recovery from gaussian measurements matches the minimax mse of matrix denoising. In: Proceedings of the National Academy of Sciences of the United States of America 110, 8405–8410 (2013).

  31. Fan, L., Li, X., Fan, H., et al.: An adaptive boosting procedure for low-rank based image denoising. Signal Process. 164, 110–124 (2019). https://doi.org/10.1016/j.sigpro.2019.06.004

    Article  Google Scholar 

  32. Fan, L., Meng, R., Guo, Q., et al.: Image denoising by low-rank approximation with estimation of noise energy distribution in svd domain. IET Image Process. 13(4), 680–691 (2019). https://doi.org/10.1049/iet-ipr.2018.6357

    Article  Google Scholar 

  33. Guillaume, T., Gabriel, P., Yann, G.: Wasserstein loss for image synthesis and restoration. SIAM J. Imag. Sci. 9(4), 1726–1755 (2016). https://doi.org/10.1137/16m1067494

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, M., Desrosiers, C.: Structure preserving image denoising based on low-rank reconstruction and gradient histograms. Comput. Vis. Image Underst. 171, 48–60 (2018). https://doi.org/10.1016/j.cviu.2018.05.006

    Article  Google Scholar 

  35. Jain, P., Tyagi, V.: An adaptive edge-preserving image denoising technique using tetrolet transforms. Vis. Comput. 31(5), 657–674 (2014). https://doi.org/10.1007/s00371-014-0993-7

    Article  Google Scholar 

  36. Marian-Daniel, L., Bioucas-Dias, J.M., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(6), 2014–2039 (2011). https://doi.org/10.1117/12.2326694.5847436239001

    Article  Google Scholar 

  37. Wang, H., Cen, Y., He, Z., et al.: Reweighted low-rank matrix analysis with structural smoothness for image denoising. IEEE Trans. Image Process. 27(4), 1777–1792 (2018). https://doi.org/10.1109/tip.2017.2781425

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, Q., Liu, B., Zhang, Y., et al.: Low-rank decomposition on transformed feature maps domain for image denoising. Vis. Comput. 37(7), 1899–1915 (2021). https://doi.org/10.1007/s00371-020-01951-0

    Article  Google Scholar 

  39. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: toward a fast and flexible solution for cnn-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018). https://doi.org/10.1109/tip.2018.2839891

    Article  MathSciNet  Google Scholar 

  40. Fazel, M.: Matrix rank minimization with applications. PhD thesis, Stanford Unversity (2002).

  41. Candes, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010). https://doi.org/10.1109/tit.2010.2044061

    Article  MathSciNet  MATH  Google Scholar 

  42. Lu, C., Tang, J., Yan, S., et al.: Generalized nonconvex nonsmooth low-rank minimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 4130–4137 (2014)

  43. Jia, X., Feng, X., Wang, W.: Rank constrained nuclear norm minimization with application to image denoising. Signal Process. 129, 1–11 (2016). https://doi.org/10.1016/j.sigpro.2016.05.026

    Article  Google Scholar 

  44. Zhang, D., Hu, Y., Ye, J., et al.: Matrix completion by truncated nuclear norm regularization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2192–2199. https://doi.org/10.1109/CVPR.2012.6247927

  45. Zhai, L., Fu, S., Lv, H., et al.: Weighted schatten p-norm minimization for 3d magnetic resonance images denoising. Brain Res Bull 142, 270–280 (2018). https://doi.org/10.1016/j.brainresbull.2018.08.006

    Article  Google Scholar 

  46. Fan, L., Li, H., Zhen, H., et al.: Two-stage image denoising via an enhanced low-rank prior. J. Sci. Comput. 90(1), 1–31 (2022). https://doi.org/10.1007/s10915-021-01728-0

    Article  MathSciNet  MATH  Google Scholar 

  47. Hirokazu, Y., Chen, D., Yoshikazu, W., et al.: Kernel wiener filter and its application to pattern recognition. IEEE Trans. Neural Netw. 21(11), 1719–1730 (2010). https://doi.org/10.1109/tnn.2010.2059042

    Article  Google Scholar 

  48. Zhang, Y., Xiao, J., Peng, J., et al.: Kernel wiener filtering model with low-rank approximation for image denoising. Inf. Sci. 462, 402–416 (2018). https://doi.org/10.1016/j.ins.2018.06.028

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, Y., Kang, R., Peng, X., et al.: Image denoising via structure-constrained low-rank approximation. Neural Comput. Appl. 32(16), 12575–12590 (2020). https://doi.org/10.1109/icmew.2019.00050

    Article  Google Scholar 

  50. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  51. Rehman, A., Rostami, M., Wang, Z., et al.: (2012) Ssim-inspired image restoration using sparse representation. EURASIP J. Adv. Signal Process. 1, 1–12 (2012). https://doi.org/10.1186/1687-6180-2012-16

    Article  Google Scholar 

  52. Stephen, B., Parikh, N., Chu, E.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc, (2011)

  53. Zhan, Z., Zhang, X., Wang, Q., et al.: Group sparsity residual with non-local samples for image denoising. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1353–1357. https://doi.org/10.1109/ICASSP.2018.8461388

  54. Liu, J., Osher, S.: Block matching local svd operator based sparsity and tv regularization for image denoising. J. Sci. Comput. 78(1), 607–624 (2019). https://doi.org/10.3997/2214-4609.201901349

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, F., Fan, H., Liu, P., et al.: Image denoising using hybrid singular value thresholding operators. IEEE Access 8, 8157–8165 (2020). https://doi.org/10.1109/access.2020.2964683

    Article  Google Scholar 

Download references

Funding

This work was supported partly by the National Natural Science Foundation of China under Grant Nos. 62072281, 62007017, 62002200, the Science and Technology Innovation Program for Distributed Young Talents of Shandong Province Higher Education Institutions, China under Grant No. 2019KJN042, the Natural Science Foundation of Shandong Province, China under Grant No. ZR2020QF012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiming Zhang.

Ethics declarations

Conflict of interest

Author Miaowen Shi declares that she has no conflict of interest. Author Linwei Fan declares that she has no conflict of interest. Author Xuemei Li declares that she has no conflict of interest. Author Caiming Zhang declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Fan, L., Li, X. et al. A competent image denoising method based on structural information extraction. Vis Comput 39, 2407–2423 (2023). https://doi.org/10.1007/s00371-022-02491-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02491-5

Keywords