Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

LVDIF: a framework for real-time interaction with large volume data

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The interest in real-time volume graphics has grown rapidly in the last few years, driven by the increasing demands from both academia and industry. GPU-based volume rendering has been used in a wide variety of fields, including scientific visualization, visual effects, and video games. Similarly, real-time volume editing has been used to build terrain and create visual effects during game development; it has even become an integral part of gameplay in various video games (e.g., Minecraft). Nowadays, as the size of volume data increases, processing large volume data in real time is inevitable in many modern application scenarios. However, manipulation and editing of large volume data are associated with various challenges, such as dramatically increasing memory usage and computational burden. In this paper, we present a framework for interactive manipulation and editing of large volume data to address these challenges. A robust and efficient method for large signed distance function (SDF) volume generation is presented and incorporated into the framework. Also, a complete implementation with specialized GPU optimization is introduced to demonstrate its usefulness and effectiveness—it is included in the framework as well. The framework can be an easy-to-use middleware or a plugin that is able to integrate into game engines for the development of various types of applications (e.g., video games). It can also contribute to the research looking at large volume data from a user-centered perspective (e.g., for human–computer interaction researchers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://unity.com/.

  2. https://iquilezles.org/www/articles/distfunctions/distfunctions.htm.

  3. https://www.7-zip.org/7z.html.

  4. https://github.com/Chaosikaros/LVDIF.

References

  1. Andreas Bærentzen, J.: Robust generation of signed distance fields from triangle meshes. Volume Graphics 2005 Eurographics/IEEE VGTC Workshop Proceedings—4th International Workshop on Volume Graphics (IMM), pp. 167–175 (2005). https://doi.org/10.1109/vg.2005.194111

  2. Boada, I., Navazo, I., Scopigno, R.: Multiresolution volume visualization with a texture-based octree. Vis. Comput. 17(3), 185–197 (2001)

    Article  MATH  Google Scholar 

  3. Bürger, K., Krüger, J., Westermann, R.: Direct volume editing. IEEE Trans. Vis. Comput. Graph. 14(6), 1388–1395 (2008). https://doi.org/10.1109/TVCG.2008.120

    Article  Google Scholar 

  4. Chittenden, T.: Tilt Brush painting: chronotopic adventures in a physical-virtual threshold. J. Contemp. Paint. 4(2), 381–403 (2018). https://doi.org/10.1386/jcp.4.2.381_1

    Article  Google Scholar 

  5. Cirne, M.V.M., Pedrini, H.: Marching cubes technique for volumetric visualization accelerated with graphics processing units. J. Braz. Comput. Soc. 19(3), 223–233 (2013). https://doi.org/10.1007/s13173-012-0097-z

    Article  Google Scholar 

  6. Cristie, V., Berger, M., Bus, P., Kumar, A., Klein, B.: CityHeat, pp. 1–4 (2015). https://doi.org/10.1145/2818517.2818527

  7. Dyken, C., Ziegler, G., Theobalt, C., Seidel, H.P.: High-speed marching cubes using histopyramids. Comput. Graph. Forum 27(8), 2028–2039 (2008). https://doi.org/10.1111/j.1467-8659.2008.01182.x

    Article  Google Scholar 

  8. Gibson, S.F.: Constrained elastic surface nets: Generating smooth surfaces from binary segmented data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 888–898 (1998)

  9. Goetz, F., Junklewitz, T., Domik, G.: Real-Time Marching Cubes on the Vertex Shader. Eurographics 2005, 1–4 (2005)

    Google Scholar 

  10. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering of large volume data sets. Proc. IEEE Vis. Confer. D, 53–60 (2002). https://doi.org/10.1109/visual.2002.1183757

    Article  Google Scholar 

  11. Hoetzlein, R., Höllerer, T.: Interactive water streams with sphere scan conversion. Proceedings of I3D 2009: The 2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games 1(212), 107–114 (2009). https://doi.org/10.1145/1507149.1507166

  12. Hormann, K., Agathos, A.: The point in polygon problem for arbitrary polygons. Comput. Geom. 20(3), 131–144 (2001). https://doi.org/10.1016/s0925-7721(01)00012-8

  13. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: LoRA: low-rank adaptation of large language models, pp. 1–26 (2021)

  14. Jacobson, A., Kavan, L., Sorkine-Hornung, O.: Robust inside-outside segmentation using generalized winding numbers. ACM Trans. Graph. (2013). https://doi.org/10.1145/2461912.2461916

  15. Jeremias, P., Quilez, I.: Shadertoy: live coding for reactive shaders. In: ACM SIGGRAPH 2013 Computer Animation Festival, p. 1 (2013)

  16. Johansson, G., Carr, H.: Accelerating marching cubes with graphics hardware. In: Proceedings of the 2006 Conference of the Center for Advanced Studies on Collaborative Research, pp. 39–es (2006)

  17. Jones, M.W., Bærentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 518–599 (2006). https://doi.org/10.1109/TVCG.2006.56

    Article  Google Scholar 

  18. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of Hermite data. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 339–346 (2002)

  19. Kasson, J.M., Plouffe, W., Nin, S.I.: Tetrahedral interpolation technique for color space conversion. In: Device-Independent Color Imaging and Imaging Systems Integration, vol. 1909, pp. 127–138 (1993)

  20. Krayer, B., Müller, S.: Generating signed distance fields on the GPU with ray maps. Vis. Comput. 35(6–8), 961–971 (2019). https://doi.org/10.1007/s00371-019-01683-w

    Article  Google Scholar 

  21. Laine, S., Karras, T.: Efficient sparse voxel octrees. IEEE Trans. Vis. Comput. Graph. 17(8), 1048–1059 (2010)

    Article  Google Scholar 

  22. Liu, F., Kim, Y.J.: Exact and adaptive signed distance fields computation for rigid and deformable models on GPUS. IEEE Trans. Vis. Comput. Graph. 20(5), 714–725 (2014). https://doi.org/10.1109/TVCG.2013.268

    Article  Google Scholar 

  23. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, vol. 21, no. 4, pp. 163–169 (1987). https://doi.org/10.1145/37401.37422

  24. Mawhorter, P., Mateas, M.: Procedural level generation using occupancy-regulated extension. In: Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, pp. 351–358 (2010)

  25. Museth, K., Lait, J., Johanson, J., Budsberg, J., Henderson, R., Alden, M., Cucka, P., Hill, D., Pearce, A.: OpenVDB: an open-source data structure and toolkit for high-resolution volumes. In: ACM SIGGRAPH 2013 Courses, p. 1 (2013)

  26. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Comput. Graph. 30(5), 854–879 (2006)

    Article  Google Scholar 

  27. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)

    Article  Google Scholar 

  28. Qin, J., Chui, Y.P., Pang, W.M., Choi, K.S., Heng, P.A.: Learning blood management in orthopedic surgery through gameplay. IEEE Comput. Graph. Appl. 30(2), 45–57 (2010). https://doi.org/10.1109/MCG.2009.83

    Article  Google Scholar 

  29. Schaefer, S., Warren, J.: Dual marching cubes: primal contouring of dual grids. Comput. Graph. Forum 24(2), 195–201 (2005). https://doi.org/10.1111/j.1467-8659.2005.00843.x

    Article  Google Scholar 

  30. Schneider, J., Westermann, R.: Compression domain volume rendering. In: IEEE Visualization, 2003. VIS 2003, pp. 293–300 (2003). https://doi.org/10.1109/VISUAL.2003.1250385

  31. Sherbondy, A., Houston, M., Napel, S.: Fast volume segmentation with simultaneous visualization using programmable graphics hardware. In: IEEE Visualization, 2003. VIS 2003, pp. 171–176 (2003)

  32. Shi, R., Zhang, J., Yue, Y., Yu, L., Liang, H.N.: Exploration of bare-hand mid-air pointing selection techniques for dense virtual reality environments. In: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, CHI EA ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544549.3585615

  33. Shi, R., Zhu, N., Liang, H.N., Zhao, S.: Exploring head-based mode-switching in virtual reality. In: 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 118–127 (2021). https://doi.org/10.1109/ISMAR52148.2021.00026

  34. Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing of GigaSample terrain fields. Comput. Graph. Forum 31(2), 383–392 (2012). https://doi.org/10.1111/j.1467-8659.2012.03017.x

    Article  Google Scholar 

  35. Tzevanidis, K., Zabulis, X., Sarmis, T., Koutlemanis, P., Kyriazis, N., Argyros, A.: From multiple views to textured 3d meshes: a GPU-powered approach. In: Proceedings of the 11th European Conference on Trends and Topics in Computer Vision-Volume Part II, pp. 384–397 (2010)

  36. Wang, J., Shi, R., Xiao, Z., Qin, X., Liang, H.N.: Effect of render resolution on gameplay experience, performance, and simulator sickness in virtual reality games. Proc. ACM Comput. Graph. Interact. Tech. (2022). https://doi.org/10.1145/3522610

  37. Wang, J., Shi, R., Zheng, W., Xie, W., Kao, D., Liang, H.N.: Effect of frame rate on user experience, performance, and simulator sickness in virtual reality. IEEE Trans. Vis. Comput. Graph. 29(05), 2478–2488 (2023). https://doi.org/10.1109/TVCG.2023.3247057

    Article  Google Scholar 

  38. Wu, J., Wang, D., Wang, C.C., Zhang, Y.: Toward stable and realistic haptic interaction for tooth preparation simulation. J. Comput. Inf. Sci. Eng. 10(2), 1–9 (2010). https://doi.org/10.1115/1.3402759

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their valuable time and insightful comments that helped improve our paper. This research was partly funded by Xi’an Jiaotong-Liverpool University Special Key Fund (#KSF-A-03), the National Natural Science Foundation of China (#62272396), and XJTLU Research Development Fund (#RDF-21-02-065, #RDF-19-02-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ning Liang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to report. Other relate data and materials can be available upon reasonable request to the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 17856 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xiang, N., Kukreja, N. et al. LVDIF: a framework for real-time interaction with large volume data. Vis Comput 39, 3373–3386 (2023). https://doi.org/10.1007/s00371-023-02976-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02976-x

Keywords