Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Linear and nonlinear causality between signals: methods, examples and neurophysiological applications

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we will present and review the most usual methods to detect linear and nonlinear causality between signals: linear Granger causality test (Geweke in J Am Stat Assoc 77:304–313, 1982) extended to direct causality in multivariate case (LGC), directed coherence (DCOH, Saito and Harashima in Recent advances in EEG and EMG data processing, Elsevier, Amsterdam, 1981), partial directed coherence (PDC, Sameshima and Baccala 1999) and nonlinear Granger causality test of Baek and Brock (in Working Paper University of Iowa, 1992) extended to direct causality in multivariate case (partial nonlinear Granger causality, PNGC). All these methods are tested and compared on several ARX, Poisson and nonlinear models, and on neurophysiological data (depth EEG). The results show that LGC, DCOH and PDC are not very robust in relation to nonlinear linkages but they seem to correctly find linear linkages if only the autoregressive parts are nonlinear. PNGC is extremely dependent on the choice of parameters. Moreover, LGC and PNGC may give misleading results in the case of causality on a spectral band, which is illustrated by our neurophysiological database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley R, Granger CWJ, Schmalensee R (1980) Advertising and aggregate consumption: an analysis of causality. Econometrica 48:1149–1168

    Article  Google Scholar 

  • Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83(10):3513–3517

    Article  PubMed  CAS  Google Scholar 

  • Baccala LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(6):463–474

    Article  PubMed  CAS  Google Scholar 

  • Baek E, Brock W (1992) A general test for nonlinear Granger causality. Working Paper University of Iowa

  • Bernasconi C, Konig P (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol Cybern 81(3):199–210

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi C, von Stein A, Chiang C, Konig P (2000) Bi-directional interactions between visual areas in the awake behaving cat. Neuroreport 11(4):689–692

    PubMed  CAS  Google Scholar 

  • Boudjellaba H, Dufour JM, Roy R (1992) Testing causality between two vectors in multivariate autoregressive moving average models. J Am Stat Assoc 87:1082–1090

    Article  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101(26):9849–9854

    Article  PubMed  CAS  Google Scholar 

  • Caines P, Chan C (1975) Feedback between stationary stochastic processes. IEEE Trans Automat Control 20(4):498–508

    Article  Google Scholar 

  • Casdagli MC, Iasemidis LD, Savit RS, Gilmore RL, Roper SN, Sackellares JC (1997) Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol 102(2):98–105

    Article  PubMed  CAS  Google Scholar 

  • Cassidy M, Brown P (2003) Spectral phase estimates in the setting of multidirectional coupling. J Neurosci Methods 127(1):95–103

    Article  PubMed  Google Scholar 

  • Chartrand G (1985) Introductory graph theory. Dover, New York

    Google Scholar 

  • Chavez M, Martinerie J, Le Van Quyen M (2003) Statistical assessment of nonlinear causality: application to epileptic EEG signals. J Neurosci Methods 124(2):113–128

    Article  PubMed  Google Scholar 

  • Chen Y, Rangarajan G, Feng J, Ding M (2004) Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 324(1):26–35

    Article  CAS  Google Scholar 

  • Chen Y, Bressler SL, Ding M (2006) Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 150(2): 228–237

    Article  PubMed  Google Scholar 

  • Dahlhaus R, Eichler M (2003) Causality and graphical models for time series. In: Green P, Hjort N, Richardson S (eds) Highly structured stochastic systems. University Press, Oxford

    Google Scholar 

  • De Clercq W, Lemmerling P, Van Huffel S, Van Paesschen W (2003) Anticipation of epileptic seizures from standard EEG recordings. Lancet 361(9361):971; author reply 971

    Google Scholar 

  • Diks C, Panchenko V (2005) A note on the Hiemstra–Jones test for Granger non-causality. Stud Nonlinear Dynam Econometrics 9(2), art 4:1–7

    Google Scholar 

  • Diks CG, Degoede J (2001) A general nonparametric bootstrap test for Granger causality. In: Broer HW, Krauskopf W, Vegter G (eds) Global analysis of dynamical systems. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol Cybern 83(1):35–45

    Article  PubMed  CAS  Google Scholar 

  • Elbert T, Ray WJ, Kowalik,ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74(1):1–47

    PubMed  CAS  Google Scholar 

  • Frank GW, Lookman T, Nerenberg MAH, Essex C, Lemieux J, Blume W (1990) Chaotic time series analysis of epileptic seizures. Physica D 46:427–438

    Article  Google Scholar 

  • Freiwald WA, Valdes P, Bosch J, Biscay R, Jimenez JC, Rodriguez LM, Rodriguez V, Kreiter AK, Singer W (1999) Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J Neurosci Methods 94(1):105–119

    Article  PubMed  CAS  Google Scholar 

  • Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77:304–313

    Article  Google Scholar 

  • Geweke J (1984) Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc 79: 907–915

    Article  Google Scholar 

  • Geweke J, Meese R, Dent W (1983) Comparing alternative tests of causality in temporal systems: analytic results and experimental evidence. J Econometrics 21:161–194

    Article  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  • Granger CWJ, Newbold P (1977) Forecasting economic time series. Academic, New York

    Google Scholar 

  • Grassberger P (1988) Finite sample correction to entropy and dimension estimates. Phys Lett A 128:369–373

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189

    Article  Google Scholar 

  • Grassberger P, Schreiber T, Schaffrath C (1991) Non-linear time sequence analysis. Int J Bif Chaos 1:521–547

    Article  Google Scholar 

  • Guéguin M, Le Bouquin-Jeannès R, Faucon F, Chauvel P, Liégeois-Chauvel C (2006) Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing. Cerebral Cortex doi:10.1093/cercor/bhj148

  • Hesse W, Moller E, Arnold M, Witte H, Schack B (2002) Brief causal relations in EEG based on adaptive Granger causality. Biomed Tech (Berl) 47(Suppl 1 Pt 2):510–513

    Article  Google Scholar 

  • Hesse W, Moller E, Arnold M, Schack B (2003) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosci Methods 124(1):27–44

    Article  PubMed  Google Scholar 

  • Hiemstra C, Jones J (1994) Testing for linear and nonlinear Granger causality in the stock price-volume relation. J Finance 49:1639–1664

    Article  Google Scholar 

  • Hoekstra BP, Diks CG, Allessie MA, Degoede J (2001) Non-linear time series analysis: methods and applications to atrial fibrillation. Ann Ist Super Sanita 37(3):325–333

    PubMed  CAS  Google Scholar 

  • Iasemidis LD, Sackellares JC (1996) Chaos theory and epilepsy. The Neuroscientist. Williams and Wilkins, Baltimore, pp 118–208

    Google Scholar 

  • Jing H, Takigawa M (2000) Observation of EEG coherence after repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:1620–1631

    Article  PubMed  CAS  Google Scholar 

  • Jing H, Takigawa M, Okamura H, Doi W, Fukuzako H (2001a) Comparisons of event-related potentials after repetitive transcranial magnetic stimulation. J Neurol 248(3):184–192

    Article  PubMed  CAS  Google Scholar 

  • Jing H, Takigawa M, Hamada K, Okamura H, Kawaika Y, Yonezawa T, Fukuzako H (2001b) Effects of high frequency repetitive transcranial magnetic stimulation on P300 event-related potentials. Clin Neurophysiol 112:304–313

    Article  PubMed  CAS  Google Scholar 

  • Kaminski M, Blinowska K, Szelenberger W (1995) Investigation of coherence structure and EEG activity propagation during sleep. Acta Neurobiol Exp (Wars) 55(3):213–219

    CAS  Google Scholar 

  • Kaminski M, Blinowska K, Szclenberger W (1997) Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroencephalogr Clin Neurophysiol 102(3):216–227

    Article  PubMed  CAS  Google Scholar 

  • Kaminski M, Ding M, Truccolo W, Bressler SL (2001) Evaluating relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145–157

    Article  PubMed  CAS  Google Scholar 

  • Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210

    Article  PubMed  CAS  Google Scholar 

  • Kanzler L (1998) A Study of the efficiency of the foreign exchange market through analysis of ultra-high frequency data. PhD Thesis, University of Oxford

  • Kelly JP (1991) Hearing. Princ Neural Sci

  • Korzeniewska A, Kasicki S, Kaminski M, Blinowska KJ (1997) Information flow between hippocampus and related structures during various types of rat’s behavior. J Neurosci Methods 73(1):49–60

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewska A, Manczak M, Kaminski M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125(1-2):195–207

    Article  PubMed  Google Scholar 

  • LeBaron B (1997) A fast algorithm for the BDS statistic. Stud Nonlinear Dynam Econometrics 2:53–59

    Article  Google Scholar 

  • Liang H, Ding M, Nakamura R, Bressler SL (2000) Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport 11(13):2875–2880

    PubMed  CAS  Google Scholar 

  • Liégeois-Chauvel C, Lorenzi C, Trebuchon A, Régis J, Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cereb Cortex 14:731–740

    Article  PubMed  Google Scholar 

  • Ljung L (1999) System identification û theory for the user. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lopes da Silva FH, Mars NJI (1987) Parametric methods in EEG analysis. In: Gevins AS, Remond A (eds) Methods of analysis of brain electrical and magnetic signals, EEG handbook, vol 1. Elsevier, Amsterdam, pp 243–260

    Google Scholar 

  • Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, Varela FJ (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4(10):1173–1176

    Article  PubMed  CAS  Google Scholar 

  • McSharry PE, Smith LA, Tarassenko L (2003a) Comparison of predictability of epileptic seizures by a linear and a nonlinear method. IEEE Trans Biomed Eng 50(5):628–633

    Article  PubMed  Google Scholar 

  • McSharry PE, Smith LA, Tarassenko L (2003b) Prediction of epileptic seizures: are nonlinear methods relevant? Nat Med 9(3):241–242; author reply 242

    Google Scholar 

  • Moller E, Schack B, Arnold M, Witte H (2001) Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. J Neurosci Methods 105(2):143–158

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Acharya UR, Alias F, Tiboleng T, Puthusserypady SK (2004) Nonlinear analysis of EEG signals at different mental states. Biomed Eng Online 3(1):7

    Article  PubMed  Google Scholar 

  • Olofsen E (1991) The identification of strange attractors using experimental time series PhD Thesis, Twente University, The Netherlands

  • Palus M (1996) Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol Cybern 75(5):389–396

    Article  PubMed  CAS  Google Scholar 

  • Palus M (1999) Nonlinear dynamics in the EEG analysis: disappointments and perspectives. In: Pradhan N, Rapp PE, Sreenivasan R (ed) Nonlinear dynamics and brain functioning. Novascience, New York

    Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Google Scholar 

  • Picton TW (1987) Human auditory steady state responses. In: Barber C, Blum T (eds) Evoked potentials, vol III. Butterworth, Boston, pp 117–124

    Google Scholar 

  • Pijn JPM (1990) Quantitative evaluation of EEG signals in epilepsy; nonlinear associations, time delays and nonlinear dynamics. PhD Thesis, University of Amsterdam

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837

    Google Scholar 

  • Sabesan S, Narayanan K, Prasad A, Spanias A, Sackellares JC, Iasemidis LD (2003) Predictability of epileptic seizures: a comparative study using Lyapunov exponent and entropy based measures. Biomed Sci Instrum 39:129–135

    PubMed  Google Scholar 

  • Saito Y, Harashima H (1981) Tracking of information within multichannel EEG record. In: Yamaguchi N, Fujisawa K (eds) Recent advances in EEG and EMG data processing. Elsevier, Amsterdam, pp 133–146

    Google Scholar 

  • Sameshima K, Baccala LA (1999) Using partial directed coherence to describe neuronal ensemble interactions. J Neurosci Methods 94:93–103

    Article  PubMed  CAS  Google Scholar 

  • Schack B, Grieszbach G, Arnold M, Bolten J (1995) Dynamic cross-spectral analysis of biological signals by means of bivariate ARMA processes with time-dependent coefficients. Med Biol Eng Comput 33(4):605–610

    PubMed  CAS  Google Scholar 

  • Schelter B, Winterhalder M, Timmer J (2004a) Detection of coupling directions in multivariate oscillatory systems. In: 8th Experimental chaos conference

  • Schelter B, Winterhalder M, Timmer J (2004b) Time varying causal influences in multivariate time series. In: Workshop “Recent advances in time series analysis”

  • Schnider SM, Kwong RH, Lenz FA, Kwan HC (1989) Detection of feedback in the central nervous system using system identification techniques. Biol Cybern 60(3):203–212

    Article  PubMed  CAS  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464

    Article  PubMed  CAS  Google Scholar 

  • Silverman BW (1986) Kernel density estimation techniques for statistics and data analysis. Chapman Hall, London

    Google Scholar 

  • Sims CA (1972) Money, income, and causality. Am Econ Rev 62(4):540–553

    Google Scholar 

  • Supp GG, Schlgl A, Gunter TC, Bernard M, Pfurtscheller G, Petsche H (2004) Lexical memory search during N400: cortical couplings in auditory comprehension. Neuroreport 15(7):1209–1213

    Article  PubMed  Google Scholar 

  • Takigawa M (1988) Rhythmic light therapy for depression and data processing analysis of its effects by directed coherence. Act Nerv Super (Praha) 30(3):177–180

    CAS  Google Scholar 

  • Takigawa M, Wang H, Kawasaki H, Fukuzako H (1996) EEG analysis of epilepsy by directed coherence method. A data processing approach. Int J Psychophysiol 21(2/3):65–73

    CAS  Google Scholar 

  • Takigawa M, Wang H, Hamada K, Shiratani T, Takenouchi K (2000) Directed coherence of EEG on ICSS rats with methamphetamine-induced hyperactivity and stereotyped behavior. Ann N Y Acad Sci 914:311–315

    Article  PubMed  CAS  Google Scholar 

  • Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A 34(3):2427–2432

    Article  PubMed  Google Scholar 

  • Theiler J, Rapp PE (1996) Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalogr Clin Neurophysiol 98(3):213–222

    Article  PubMed  CAS  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Triacca U (2004) Feedback, causality and distance between arma models. Math Comput Simulat 64:679–685

    Article  Google Scholar 

  • Wang G, Takigawa M (1992) Directed coherence as a measure of interhemispheric correlation of EEG. Int J Psychophysiol 13(2):119–128

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Yunokuchi K (2002) Causality of frontal and occipital alpha activity revealed by directed coherence. IEICE Trans Inf Syst E85-D:1334–1340

    Google Scholar 

  • Wang G, Takigawa M, Matsushita T (1992) Correlation of alpha activity between the frontal and occipital cortex. Jpn J Physiol 42(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Wiener N, (1956) The theory of prediction. In: Beckenbach EF, editors. Modern Mathematics for Engineers. New York, McGraw-Hill

    Google Scholar 

  • Winterhalder M, Schelter B, Maiwald T, Aschenbrenner- Scheibe R, Brandt A, Schulze-Bonhage A, Timmer J (2004) Nonlinear dynamics in EEG from epileptic patients: Is it possible to predict seizures?. In: Boccaletti S, Gluckman BJ, Kurths J et al (eds) Experimental chaos, vol AIP Conference Proceedings 742. AIP Press, Florence

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Gourévitch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourévitch, B., Bouquin-Jeannès, R.L. & Faucon, G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95, 349–369 (2006). https://doi.org/10.1007/s00422-006-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0098-0

Keywords