Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hardness of Metric Dimension in Graphs of Constant Treewidth

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Metric Dimension problem asks for a minimum-sized resolving set in a given (unweighted, undirected) graph G. Here, a set \(S \subseteq V(G)\) is resolving if no two distinct vertices of G have the same distance vector to S. The complexity of Metric Dimension in graphs of bounded treewidth remained elusive in the past years. Recently, Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard under treewidth parameterization. In this work, we strengthen their lower bound to show that Metric Dimension is NP-hard in graphs of treewidth \(24\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. SIAM J. Discret. Math. 31(2), 1217–1243 (2017). https://doi.org/10.1137/16M1057383

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnet, E., Purohit, N.: Metric dimension parameterized by treewidth. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th International Symposium on Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019, Munich, Germany, volume 148 of LIPIcs, pages 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2019) https://doi.org/10.4230/LIPIcs.IPEC.2019.5

  3. Díaz, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017). https://doi.org/10.1016/j.jcss.2016.06.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algorithms Appl. 19(1), 313–323 (2015). https://doi.org/10.7155/jgaa.00360

    Article  MathSciNet  MATH  Google Scholar 

  5. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: Hard and easy cases. Algorithmica 72(4), 1130–1171 (2015). https://doi.org/10.1007/s00453-014-9896-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernau, H., Heggernes, P., van ’t Hof, P., Meister, D., Saei, R.: Computing the metric dimension for chain graphs. Inf. Process. Lett. 115(9), 671–676 (2015). https://doi.org/10.1016/j.ipl.2015.04.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs . ii. algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

    Article  MathSciNet  Google Scholar 

  8. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2(1), 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 266–276. IEEE Computer Society, (2013) https://doi.org/10.1109/CCC.2013.36

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations, pages 85–103. Springer, (1972)

  11. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70(3), 217–229 (1996). https://doi.org/10.1016/0166-218X(95)00106-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and seatching. Discret. Math. 55(2), 181–184 (1985)

    Article  Google Scholar 

  13. Slater, P.J.: Leaves of trees. Congr. Numer. 14(37), 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Li.

Ethics declarations

Conflict of Interest

The authors of this paper, Shaohua Li and Marcin Pilipczuk, certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is a part of projects that have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 714704. A preliminary version appeared at IPEC 2021

figure a

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Pilipczuk, M. Hardness of Metric Dimension in Graphs of Constant Treewidth. Algorithmica 84, 3110–3155 (2022). https://doi.org/10.1007/s00453-022-01005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01005-y

Keywords