Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Stability Inequalities for Projections of Convex Bodies

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The projection function \(P_K\) of an origin-symmetric convex body K in \({{\mathbb {R}}}^n\) is defined by \(P_K(\xi )=|K\vert {\xi ^\bot }|,\ \xi \in S^{n-1},\) where \(K\vert {\xi ^\bot }\) is the projection of K to the central hyperplane \(\xi ^\bot \) perpendicular to \(\xi \), and |K| stands for volume of proper dimension. We prove several stability and separation results for the projection function. For example, if D is a projection body in \({{\mathbb {R}}}^n\) which is in isotropic position up to a dilation, and K is any origin-symmetric convex body in \({{\mathbb {R}}}^n\) such that that there exists \(\xi \in S^{n-1}\) with \(P_K(\xi )>P_D(\xi ),\) then

$$\begin{aligned} \max _{\xi \in S^{n-1}} (P_K(\xi )-P_D(\xi )) \ge \frac{c}{\log ^2n} \big (|K|^{\frac{n-1}{n}} -|D|^{\frac{n-1}{n}}\big ), \end{aligned}$$

where c is an absolute constant. As a consequence, we prove a hyperplane inequality

$$\begin{aligned} S(D) \le \ C \log ^2n \max _{\xi \in S^{n-1}} S(D\vert \xi ^\bot )\ |D|^{\frac{1}{n}}, \end{aligned}$$

where D is a projection body in isotropic position, up to a dilation, S(D) is the surface area of \(D,S(D\vert \xi ^\bot )\) is the surface area of the body \(D\vert \xi ^\bot \) in \({{\mathbb {R}}}^{n-1},\) and C is an absolute constant. The proofs are based on the Fourier analytic approach to projections developed in [12].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: On the surface area function of a convex body. Mat. Sb. 6, 167–174 (1939)

    Google Scholar 

  2. Ball, K.: Shadows of convex bodies. Trans. Am. Math. Soc. 327, 891–901 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolker, E.D.: A class of convex bodies. Trans. Am. Math. Soc. 145, 323–345 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: On the distribution of polynomials on high-dimensional convex sets. In: Lindenstrauss J., Milman V.D. (eds.) Geometric Aspects of Functional Analysis, Israel Seminar (1989–90). Lecture Notes in Mathematics, vol. 1469, pp. 127–137. Springer, Berlin (1991)

  5. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.: Geometry of Isotropic Log-Concave Measures. American Mathematical Society, Providence, RI (2014)

    MATH  Google Scholar 

  6. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  7. Grinberg, E., Zhang, Gaoyong: Convolutions, transforms, and convex bodies. Proc. Lond. Math. Soc. (3) 78, 77–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Klartag, B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koldobsky, A.: Fourier Analysis in Convex Geometry. American Mathematical Society, Providence, RI (2005)

    Book  MATH  Google Scholar 

  10. Koldobsky, A.: Stability in the Busemann–Petty and Shephard problems. Adv. Math. 228, 2145–2161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koldobsky, A.: Stability and separation in volume comparison problems. Math. Model. Nat. Phenom. 8, 156–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koldobsky, A., Ryabogin, D., Zvavitch, A.: Projections of convex bodies and the Fourier transform. Isr. J. Math. 139, 361–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milman, E.: On the mean-width of isotropic convex bodies and their associated \(L_{\!p}\)-centroid bodies. Int. Math. Res. Notices IMRN 2015(11), 3408–3423 (2015)

  14. Milman, V., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376, pp. 64–104. Springer, Heidelberg (1989)

  15. Petty, C.M.: Projection bodies. In: Proceedings of the Colloquium on Convexity, pp. 234–241. Kobenhavns Univ. Mat. Inst., Copenhagen (1965)

  16. Schneider, R.: Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z. 101, 71–82 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schneider, R.: Convex bodies: the Brunn–Minkowski theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  18. Shephard, G.C.: Shadow systems of convex bodies. Isr. J. Math. 2, 229–306 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to thank the US National Science Foundation for support through Grant DMS-1265155. Part of the work was done during my stay at the Max Planck Institute for Mathematics in Bonn in Spring 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Koldobsky.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koldobsky, A. Stability Inequalities for Projections of Convex Bodies. Discrete Comput Geom 57, 152–163 (2017). https://doi.org/10.1007/s00454-016-9844-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9844-9

Keywords