Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Substitution Discrete Plane Tilings with 2n-Fold Rotational Symmetry for Odd n

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study substitution tilings that are also discrete plane tilings, that is, satisfy a relaxed version of cut-and-projection. We prove that the Sub Rosa substitution tilings with a 2n-fold rotational symmetry for odd \(n>5\) defined by Kari and Rissanen are not discrete planes—and therefore not cut-and-project tilings either. We then define new Planar Rosa substitution tilings with a 2n-fold rotational symmetry for any odd n, and show that these satisfy the discrete plane condition. The tilings we consider are edge-to-edge rhombus tilings. We give an explicit construction for the 10-fold case, and provide a construction method for the general case of any odd n. Our methods are to lift the tilings and substitutions to \({\mathbb {R}}^{{n}}\) using the lift operator first defined by Levitov, and to study the planarity of substitution tilings in \({\mathbb {R}}^{{n}}\) using mainly linear algebra, properties of circulant matrices, and trigonometric sums. For the construction of the Planar Rosa substitutions we additionally use the Kenyon criterion and a result on De Bruijn multigrid dual tilings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Arnoux, P., Furukado, M., Harriss, E., Ito, S.: Algebraic numbers, free group automorphisms and substitutions on the plane. Trans. Am. Math. Soc. 363(9), 4651–4699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2), 181–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beenker, F.P.M.: Algebraic theory of non-periodic tilings of the plane by two simple building blocks: a square and a rhombus. Report # 82-WSK-04. Eindhoven University of Technology (1982). https://research.tue.nl/en/publications/algebraic-theory-of-non-periodic-tilings-of-the-plane-by-two-simp

  4. Bédaride, N., Fernique, T.: When periodicities enforce aperiodicity. Commun. Math. Phys. 335(3), 1099–1120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baake, M., Grimm, U.: Aperiodic Order. Vol. 1: A Mathematical Invitation. Encyclopedia of Mathematics and Its Applications, vol. 149. Cambridge University Press, Cambridge (2013)

  6. Baake, M., Grimm, U.: Aperiodic Order, Vol. 2: Crystallography and Almost Periodicity. Encyclopedia of Mathematics and Its Applications, vol. 166. Cambridge University Press, Cambridge (2017)

  7. de Bruijn, N.G.: Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II. Nederl. Akad. Wetensch. Indag. Math. 43(1), 39–52, 53–66 (1981)

  8. Davis, P.J.: Circulant Matrices. A Wiley-Interscience Publication. Pure and Applied Mathematics. Wiley, New York (1979)

  9. Fernique, T.: Multidimensional Sturmian sequences and generalized substitutions. Int. J. Found. Comput. Sci. 17(3), 575–599 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frank, N.P.: A primer of substitution tilings of the Euclidean plane. Expo. Math. 26(4), 295–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman, New York (1987)

    MATH  Google Scholar 

  12. Harriss, E.: On Canonical Substitution Tilings. PhD thesis, University of London (2004). https://www.academia.edu/255299/On_Canonical_Substitution_Tilings

  13. Harriss, E.O., Lamb, J.S.W.: Canonical substitutions tilings of Ammann–Beenker type. Theor. Comput. Sci. 319(1–3), 241–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jolivet, T.: Combinatorics of Pisot Substitutions. PhD thesis, Université Paris Diderot & University of Turku (2013). https://jolivet.org/timo/docs/thesis_jolivet.pdf

  15. Kari, J., Rissanen, M.: Sub Rosa, a system of quasiperiodic rhombic substitution tilings with \(n\)-fold rotational symmetry. Discrete Comput. Geom. 55(4), 972–996 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kenyon, R.: Tiling a polygon with parallelograms. Algorithmica 9(4), 382–397 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levitov, L.S.: Local rules for quasicrystals. Commun. Math. Phys. 119(4), 627–666 (1988)

    Article  MathSciNet  Google Scholar 

  18. Lutfalla, V.H.: An effective construction for cut-and-project rhombus tilings with global \(n\)-fold rotational symmetry. In: 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (Aix-Marseille 2021). OpenAccess Series in Informatics, vol. 90, # 9. Leibniz-Zent. Inform., Wadern (2021)

  19. Lutfalla, V.H.: Substitution Discrete Planes. PhD thesis, Université Sorbonne Paris Nord (2021). https://hal.archives-ouvertes.fr/tel-03376430

  20. Masáková, Z., Mazáč, J., Pelantová, E.: On generalized self-similarities of cut-and-project sets (2019). arXiv:1909.10753

  21. Penrose, R.: The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974)

    Google Scholar 

  22. Sano, Y., Arnoux, P., Ito, S.: Higher dimensional extensions of substitutions and their dual maps. J. Anal. Math. 83, 183–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1954 (1984)

    Article  Google Scholar 

  24. Socolar, J.E.S.: Weak matching rules for quasicrystals. Commun. Math. Phys. 129(3), 599–619 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Thierry Monteil and Nicolas Bédaride for their help regarding billiard words, and also Thomas Fernique for his help and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Lutfalla.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

(eigenvalues of the elementary matrices) Let n be an odd integer and \(i\in \{0,\dots , \lfloor {n}/{2}\rfloor -1\}\). The elementary matrix \(M_i(n)\) defined in Definition 4.1 has eigenspaces \(\Delta \) and \({\mathcal {E}}_{{j}}\) for \(0\leqslant j<\lfloor n/2\rfloor \) with eigenvalue \(\lambda _\Delta =0\) and

$$\begin{aligned} \lambda _{i,j}(n)= 2\cos \frac{(2j+1)(2i+1)\pi }{2n}\,e^{-{(2j+1) \pi \mathrm{i}}/({2n})}. \end{aligned}$$

Proof

Let z be a complex number such that \(z^n=1\) and Z be the vector \((z^k)_{0\leqslant k < n}\). We have

$$\begin{aligned} Z\cdot M_i(n) = (-1)^i(z^{I({i})} - z^{J({i})})\cdot Z. \end{aligned}$$

With

$$\begin{aligned} z={\mathrm{exp}\,{\frac{2(2j+1)\pi \mathrm{i}}{n}}} \end{aligned}$$

we get that \({\mathcal {E}}_{{j}}\) is eigenspace of \(M_i(n)\) with eigenvalue \(\lambda _{i,j}(n)\),

$$\begin{aligned} \lambda _{i,j}(n)&=(-1)^i\biggl (\mathrm{exp}\,{\frac{2(2j+1) I({i})\pi \mathrm{i}}{n}}-\mathrm{exp}\,{\frac{2(2j+1)J({i}) \pi \mathrm{i}}{n}}\biggr )\\&= (-1)^i\mathrm{exp}\,\biggl (\frac{2(2j+1) i\pi \mathrm{i}}{n} \cdot \frac{n+1}{2}\biggr ) \\&\quad + (-1)^{i+1}\mathrm{exp} \,\biggl (\frac{-2(2j+1)(i+1)\pi \mathrm{i}}{n}\cdot \frac{n+1}{2}\biggr ) \\&= (-1)^i\mathrm{exp}\,{\frac{(2j+1) i(n+1)\pi \mathrm{i}}{n}} + (-1)^{i+1} \mathrm{exp}\,{\frac{-(2j+1)(i+1)(n+1)\pi \mathrm{i}}{n}} \\&= (-1)^i\mathrm{exp}\,{((2j+1) i\pi \mathrm{i})}\,\mathrm{exp}\,{\frac{(2j+1) i\pi \mathrm{i}}{n}} \\&\qquad +(-1)^{i+1}\,\mathrm{exp}\,{(-(2j+1)(i+1) \pi \mathrm{i})}\,\mathrm{exp}\,{\frac{-(2j+1)(i+1)\pi \mathrm{i}}{n}}\\&= (-1)^i(-1)^i\mathrm{exp}\,{\frac{(2j+1) i\pi \mathrm{i}}{n}} +(-1)^{i+1}(-1)^{i+1}\mathrm{exp}\,{\mathrm{i}\frac{-(2j+1)(i+1)\pi }{n}}\\&= \mathrm{exp}\,{\frac{(2j+1) i\pi \mathrm{i}}{n}} +\mathrm{exp} \,{\frac{-(2j+1)(i+1)\pi \mathrm{i}}{n}}\\&=2\cos \frac{(2j+1)(2i+1)\pi }{2n}\,\mathrm{exp} \,{\frac{-(2j+1)\pi \mathrm{i}}{2n}}. \end{aligned}$$

With \(z=1\) we get that \(\Delta \) is an eigenspace with eigenvalue 0. \(\square \)

Lemma A.2

(trigonometric manipulations) Let k be an integer and \(i\in \{0,\dots , k-1\}\). Let us define \(C_{j,k}\) by

$$\begin{aligned} C_{j,k}:=\sum \limits _{i=0}^{k-1}4(k-i)\cos {(2i+1)\theta _{j,k}}, \end{aligned}$$

with \(\theta _{j,k}:={(2j+1)\pi }/({2(2k+1)})\). We have

$$\begin{aligned} C_{j,k}\sin ^2\theta _{j,k}= \cos \theta _{j,k}. \end{aligned}$$

Proof

Let us write \(\theta \) for \(\theta _{j,k}\) for the sake of simplicity.

$$\begin{aligned}&C_{j,k} \sin ^2\theta \\&\quad =\sum \limits _{i=0}^{k-1}4(k-i)\cos \frac{(2j+1) (2i+1)\pi }{2(2k+1)}\sin ^2\theta \\&\quad =\sum \limits _{i=0}^{k-1}4(k-i) \frac{e^{\mathrm{i}(2i+1)\theta } + e^{-\mathrm{i}(2i+1)\theta }}{2} \biggl (\frac{e^{\mathrm{i}\theta } - e^{-\mathrm{i}\theta }}{2i}\biggr )^{2}\\&\quad =\sum \limits _{i=0}^{k-1}\frac{k-i}{2} \bigl (e^{\mathrm{i}(2i+1)\theta } + e^{-\mathrm{i}(2i+1)\theta }\bigr ) \bigl ( 2 - e^{\mathrm{i}2\theta } - e^{-\mathrm{i}2\theta }\bigr )\\&\quad = \sum \limits _{i=0}^{k-1}\frac{k-i}{2} \bigl ( 2e^{\mathrm{i}(2i+1)\theta } + 2e^{-\mathrm{i}(2i+1)\theta } -e^{\mathrm{i}(2i+3)\theta } \\&\qquad \qquad \qquad \qquad \qquad \qquad \quad -e^{-\mathrm{i}(2i-1)\theta } -e^{\mathrm{i}(2i-1)\theta } -e^{-\mathrm{i}(2i+3)\theta }\bigr )\\&\quad = \sum \limits _{i=0}^{k-1}(k-i)( 2\cos {(2i+1)\theta } - \cos {(2i+3)\theta } - \cos {(2i-1)\theta })\\&\quad = \sum \limits _{i=0}^{k-1}(k-i)2\cos (2i+1)\theta - \sum \limits _{i=0}^{k-1}(k-i)\cos (2i+3)\theta \\&\qquad -\sum \limits _{i=0}^{k-1}(k-i)\cos (2i-1)\theta \\&\quad = \sum \limits _{i=0}^{k-1}(k-i)2\cos {(2i+1)\theta } - \sum \limits _{i=1}^{k}(k+1-i)\cos {(2i+1)\theta }\\&\qquad -\sum \limits _{i=-1}^{k-2}(k-1-i)\cos {(2i+1)\theta }\\&\quad = \sum \limits _{i=0}^{k-1}(k-i)2\cos {(2i+1)\theta }\\&\qquad - \sum \limits _{i=0}^{k-1}(k+1-i)\cos {(2i+1)\theta } +(k+1)\cos \theta - \cos \frac{(2j+1)\pi }{2} \\&\qquad -\sum \limits _{i=0}^{k-1}(k-1-i)\cos {(2i+1)\theta } + 0\cos {(2k-1)\theta } - k\cos \theta \\&\quad = \sum \limits _{i=0}^{k-1}(2(k-i)-(k+1-i) -(k-1-i))\cos {(2i+1)\theta }\\&\qquad +(k+1-k)\cos \theta = \cos \theta . \end{aligned}$$

\(\square \)

Lemma A.3

(the eigenvalue matrix \(N_{{n}}\) is orthogonal up to a scalar) Let n be an odd integer, then the matrix \(N_{{n}}\) from Definition 4.4 is orthogonal up to a scalar. More precisely, \((1/\sqrt{n})N_{{n}}\) is an orthogonal matrix, i.e.,

$$\begin{aligned} \frac{1}{\sqrt{n}}N_{{n}}\cdot \frac{1}{\sqrt{n}} N_{{n}}^\top = \mathrm{Id}_{\lfloor {{n}/{2}}\rfloor }. \end{aligned}$$

Proof

Let us first recall that n is an odd integer. Let us define three matrices A, B, and C by:

$$\begin{aligned} A&:=\biggl (a_i\cos \frac{i(2j+1)\pi }{2n}\biggr )_{0\leqslant i,j< n}, \qquad \text {with: } a_i = {\left\{ \begin{array}{ll} \sqrt{{1}/{n}} &{}\text { if i=0},\\ \sqrt{{2}/{n}}&{} \text { otherwise}, \end{array}\right. }\\ B&:=\biggl (\sqrt{\frac{2}{n}}\cos \frac{(2i+1)(2j+1)\pi }{2n} \biggr )_{0\leqslant i< \lfloor {{n}/{2}}\rfloor , 0\leqslant j< n }, \\ C&:=\frac{1}{\sqrt{n}}N_{{n}} =\biggl (\frac{2}{\sqrt{n}}\cos \frac{(2i+1)(2j+1) \pi }{2n}\biggr )_{0\leqslant i,j < \lfloor {{n}/{2}}\rfloor }. \end{aligned}$$

Let us first remark that A is a Discrete Cosine Transform matrix, sometimes called DCT-III, which is known to be orthogonal. From this we will prove that \(B\cdot B^\top = \mathrm{Id}_{\rfloor {n/2}\rfloor }\) and then that C is orthogonal.

Let us prove \(B\cdot B^\top = \mathrm{Id}_{\lfloor {{n}/{2}}\rfloor }\). Let us look at the jk coefficient of \(B\cdot B^\top \) for \(0\leqslant j,k <n/2\):

$$\begin{aligned} (B\cdot B^\top )_{j,k}&= \sum \limits _{i=0}^{n-1} \sqrt{\frac{2}{n}}\cos \frac{(2j+1)(2i+1)\pi }{2n} \cdot \sqrt{\frac{2}{n}}\cos \frac{(2k+1)(2i+1)\pi }{2n}\\&=(A\cdot A^\top )_{2j+1,2k+1}= {\left\{ \begin{array}{ll} 1 &{}\text { if } j = k ,\\ 0 &{}\text { otherwise}. \end{array}\right. } \end{aligned}$$

Now from the fact that \(B\cdot B^\top = \mathrm{Id}_{\lfloor {{n}/ {2}}\rfloor }\) let us prove that C is orthogonal. Let us first remark that for \(0\leqslant i<\lfloor {{n}/{2}}\rfloor \) we have

$$\begin{aligned} B_{i,\lfloor {{n}/{2}}\rfloor } = \sqrt{\frac{2}{n}} \cos \frac{(2i+1)\pi }{2}=0. \end{aligned}$$

This is due to the fact that n is odd, which implies that \(n=2\lfloor {{n}/{2}}\rfloor +1\). Let us also remark that for \(0\leqslant i,j<\lfloor {{n}/{2}}\rfloor \) we have

$$\begin{aligned} \sqrt{2} B_{i,j} = C_{i,j} \qquad \text { and } \qquad B_{i,n-1-j} = -B_{i, j}. \end{aligned}$$

The first equality is just a reformulation of the definition, and for the second equality let us develop \(B_{i,n-1-j}\) as follows:

$$\begin{aligned} B_{i,n-1-j}&= \sqrt{\frac{2}{n}} \cos \frac{(2i+1)(2(n-1-j)+1)\pi }{2n}\\&= \sqrt{\frac{2}{n}} \cos \frac{(2i+1)(2n - 2 - 2j + 1)\pi }{2n}\\&= \sqrt{\frac{2}{n}} \cos \frac{(2i+1)(2n - (2j + 1))\pi }{2n}\\&= \sqrt{\frac{2}{n}} \cos {\biggl ((2i+1)\pi -\frac{(2i+1)(2j + 1)\pi }{2n}\biggr )}\\&=\sqrt{\frac{2}{n}} \cos {\biggl ( \pi -\frac{(2i+1)(2j + 1)\pi }{2n}\biggr )}\\&= -\sqrt{\frac{2}{n}} \cos \frac{(2i+1) (2j + 1)\pi }{2n}= -B_{i,j}. \end{aligned}$$

Now let us prove that \((C\cdot C^\top )_{j,k} =(B\cdot B^\top )_{j,k}\) for \(0\leqslant j,k < \lfloor {{n}/{2}}\rfloor \).

$$\begin{aligned} (B\cdot B^\top )_{j,k}&= \sum \limits _{i=0}^{n-1} B_{j,i}B_{k,i} \\&=\sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1} B_{j,i}B_{k,i} + B_{j,\lfloor {{n}/{2}}\rfloor }B_{k,\lfloor {{n}/{2}}\rfloor } +\sum \limits _{i=\lfloor {{n}/{2}}\rfloor +1}^{n-1} B_{j,i}B_{k,i} \\&=\sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1} B_{j,i} B_{k,i} + 0 + \sum \limits _{i=\lfloor {{n}/{2}}\rfloor +1}^{n-1} B_{j,i}B_{k,i} \\&=\sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1} B_{j,i}B_{k,i} +\sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1} B_{j,n-1-i} B_{k,n-1-i} \\&= \sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1}( B_{j,i} B_{k,i} + (-B_{j,i})\cdot (-B_{k,i}))\\&= \sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1} 2B_{j,i} B_{k,i}= \sum \limits _{i=0}^{\lfloor {{n}/{2}}\rfloor -1} \sqrt{2}\,B_{j,i}\sqrt{2}B_{k,i}\\&= \sum \limits _{i=0}^{\lfloor {{n}/{2}}-1} C_{j,i} C_{k,i}=( C\cdot C^\top )_{j,k}. \end{aligned}$$

Hence C is orthogonal and \(N_{{n}}\) is orthogonal up to a scalar. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kari, J., Lutfalla, V.H. Substitution Discrete Plane Tilings with 2n-Fold Rotational Symmetry for Odd n. Discrete Comput Geom 69, 349–398 (2023). https://doi.org/10.1007/s00454-022-00390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00390-z

Keywords

Mathematics Subject Classification