Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algebraic invariance conditions in the study of approximate (null-)controllability of Markov switch processes

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We aim at studying approximate null-controllability properties of a particular class of piecewise linear Markov processes (Markovian switch systems). The criteria are given in terms of algebraic invariance and are easily computable. We propose several necessary conditions and a sufficient one. The hierarchy between these conditions is studied via suitable counterexamples. Equivalence criteria are given in abstract form for general dynamics and algebraic form for systems with constant coefficients or continuous switching. The problem is motivated by the study of lysis phenomena in biological organisms and price prediction on spike-driven commodities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu V, Răşcanu A, Tessitore G (2003) Carleman estimates and controllability of linear stochastic heat equations. Appl Math Optim 47(2):97–120

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles G, Buckdahn R, Pardoux E (1997) Backward stochastic differential equations and integral-partial differential equations. Stoch Stoch Rep 60(1–2):57–83

    Article  MathSciNet  MATH  Google Scholar 

  3. Boxma O, Kaspi H, Kella O, Perry D (2005) On/off storage systems with state-dependent input, output, and switching rates. Probab Eng Inf Sci 19:1–14

    Article  MathSciNet  MATH  Google Scholar 

  4. Brémaud P (1981) Point processes and queues: martingale dynamics., Springer series in statisticsSpringer-Verlag, New York

    Book  MATH  Google Scholar 

  5. Buckdahn R, Quincampoix M, Tessitore G (2006) A characterization of approximately controllable linear stochastic differential equations. In: Da Prato G, Tubaro L (eds) Stochastic partial differential equations and applications—VII, volume 245 of Lect. Notes Pure Appl Math, pp 53–60. Chapman & Hall/CRC, Boca Raton, FL

  6. Confortola F, Fuhrman M (2013) Backward stochastic differential equations and optimal control of marked point processes. SIAM J Control Optim 51(5):3592–3623

    Article  MathSciNet  MATH  Google Scholar 

  7. Confortola F, Fuhrman M (2014) Backward stochastic differential equations associated to jump Markov processes and applications. Stoch Process Appl 124(1):289–316

    Article  MathSciNet  MATH  Google Scholar 

  8. Confortola F, Fuhrman M, Jacod J (2014) Backward stochastic differential equations driven by a marked point process: an elementary approach, with an application to optimal control. arXiv:1407.0876

  9. Cook DL, Gerber AN, Tapscott SJ (1998) Modelling stochastic gene expression: implications for haploinsufficiency. Proc Natl Acad Sci USA 95:15641–15646

    Article  Google Scholar 

  10. Crudu A, Debussche A, Muller A, Radulescu O (2012) Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann Appl Probab 22(5):1822–1859

    Article  MathSciNet  MATH  Google Scholar 

  11. Crudu A, Debussche A, Radulescu O (2009) Hybrid stochastic simplifications for multiscale gene networks. BMC Syst Biol 3:89

    Article  Google Scholar 

  12. Curtain RF (1986) Invariance concepts in infinite dimensions. SIAM J Control Optim 24(5):1009–1030

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis MHA (1984) Piecewise-deterministic Markov-processes—a general-class of non-diffusion stochastic-models. J R Stat Soc Ser B-Methodol 46(3):353–388

    MATH  Google Scholar 

  14. Davis MHA (1986) Control of piecewise-deterministic processes via discrete-time dynamic-programming. Lect Notes Control Inf Sci 78:140–150

    Article  Google Scholar 

  15. Davis MHA (1993) Markov models and optimization, volume 49 of Monographs on statistics and applied probability. Chapman & Hall, London

    Book  Google Scholar 

  16. Dempster MHA (1991) Optimal control of piecewise deterministic Markov processes. In: Davis MHA, Elliott RJ (eds) Applied stochastic analysis (London, 1989), volume 5 of Stochastics Monogr., pp 303–325. Gordon and Breach, New York

  17. Fernández-Cara E, Garrido-Atienza MJ, Real J (1999) On the approximate controllability of a stochastic parabolic equation with a multiplicative noise. C R Acad Sci Paris Sér I Math 328(8):675–680

    Article  MATH  Google Scholar 

  18. Golub GH, Pereyra V (1973) The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J Numer Anal 10(2):413–432

    Article  MathSciNet  MATH  Google Scholar 

  19. Goreac D (2009) Approximate controllability for linear stochastic differential equations in infinite dimensions. Appl Math Optim 60(1):105–132

    Article  MathSciNet  MATH  Google Scholar 

  20. Goreac D (2014) Controllability properties of linear mean-field stochastic systems. Stoch Anal Appl 32(02):280–297

    Article  MathSciNet  MATH  Google Scholar 

  21. Goreac D (2008) A Kalman-type condition for stochastic approximate controllability. CR Math 346(3–4):183–188

    Article  MathSciNet  MATH  Google Scholar 

  22. Goreac D (2012) A note on the controllability of jump diffusions with linear coefficients. IMA J Math Control Inf 29(3):427–435

  23. Goreac D (2012b) Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks. ESAIM-Control Optim Calc Var 18(2):401–426

  24. Goreac D, Serea O-S (2012) Linearization techniques for controlled piecewise deterministic Markov processes; Application to Zubov’s method. Appl Math Optim 66:209–238

    Article  MathSciNet  MATH  Google Scholar 

  25. Graham C, Robert P (2009) Interacting multi-class transmissions in large stochastic networks. Ann Appl Probab 19(6):2334–2361

    Article  MathSciNet  MATH  Google Scholar 

  26. Hautus MLJ (1969) Controllability and observability conditions of linear autonomous systems. Nederl Akad Wetensch Proc Ser A 72 Indag Math 31:443–448

    MathSciNet  Google Scholar 

  27. Ikeda N, Watanabe (1981) Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York; Kodansha Ltd, Tokyo

  28. Jacob B, Partington JR (2006) On controllability of diagonal systems with one-dimensional input space. Syst Control Lett 55(4):321–328

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacob B, Zwart H (2001) Exact observability of diagonal systems with a finite-dimensional output operator. Syst Control Lett 43(2):101–109

    Article  MathSciNet  MATH  Google Scholar 

  30. Jacobsen M (2006) Point process theory and applications. Marked point and piecewise deterministic processes. Birkhäuser Verlag GmbH, Berlin

    Google Scholar 

  31. Liu YZ, Peng SG (2002) Infinite horizon backward stochastic differential equation and exponential convergence index assignment of stochastic control systems. Automatica 38(8):1417–1423

    Article  MathSciNet  MATH  Google Scholar 

  32. Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144

    Article  MATH  Google Scholar 

  33. Pardoux E, Peng SG (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14(1):55–61

    Article  MathSciNet  MATH  Google Scholar 

  34. Peng S (1994) Backward stochastic differential equation and exact controllability of stochastic control systems. Prog Nat Sci (Engl Ed) 4:274–284

    Google Scholar 

  35. Rolski T, Schmidli H, Schmidt V, Teugels J (2009) Stochastic processes for insurance and finance, volume 505 of Wiley series in probability and statistics. Wiley, New York

  36. Russell D, Weiss G (1994) A general necessary condition for exact observability. SIAM J Control Optim 32(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  37. Schmidt EJPG, Stern RJ (1980) Invariance theory for infinite dimensional linear control systems. Appl Math Optim 6(2):113–122

    Article  MathSciNet  MATH  Google Scholar 

  38. Sirbu M, Tessitore G (2001) Null controllability of an infinite dimensional SDE with state- and control-dependent noise. Syst Control Lett 44(5):385–394

    Article  MathSciNet  MATH  Google Scholar 

  39. Soner HM (1986) Optimal control with state-space constraint. II. SIAM J Control Optim 24(6):1110–1122

    Article  MathSciNet  MATH  Google Scholar 

  40. Wainrib G, Michèle T, Pakdaman K (2010) Intrinsic variability of latency to first-spike. Biol Cybern 103(1):43–56

    Article  Google Scholar 

  41. Xia J (2000) Backward stochastic differential equation with random measures. Acta Math Appl Sin (Engl Ser) 16(3):225–234

    Article  MATH  Google Scholar 

  42. Yong J, Zhou XY (1999) Stochastic controls. Hamiltonian systems and HJB equations. Springer-Verlag, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The work of the first author has been partially supported by he French National Research Agency Project PIECE, number ANR-12-JS01-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Goreac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goreac, D., Martinez, M. Algebraic invariance conditions in the study of approximate (null-)controllability of Markov switch processes. Math. Control Signals Syst. 27, 551–578 (2015). https://doi.org/10.1007/s00498-015-0146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-015-0146-1

Keywords