Abstract
In order to overcome the disadvantage of the traditional algorithm for SLFN (single-hidden layer feedforward neural network), an improved algorithm for SLFN, called extreme learning machine (ELM), is proposed by Huang et al. However, ELM is sensitive to the neuron number in hidden layer and its selection is a difficult-to-solve problem. In this paper, a self-adaptive mechanism is introduced into the ELM. Herein, a new variant of ELM, called self-adaptive extreme learning machine (SaELM), is proposed. SaELM is a self-adaptive learning algorithm that can always select the best neuron number in hidden layer to form the neural networks. There is no need to adjust any parameters in the training process. In order to prove the performance of the SaELM, it is used to solve the Italian wine and iris classification problems. Through the comparisons between SaELM and the traditional back propagation, basic ELM and general regression neural network, the results have proven that SaELM has a faster learning speed and better generalization performance when solving the classification problem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. doi:10.1016/j.neucom.2005.12.126
Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062. doi:10.1016/j.neucom.2007.02.009
Huang G-B, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cyber 2(2):107–122. doi:10.1007/s13042-011-0019-y
Horata P, Chiewchanwattana S, Sunat K (2013) Robust extreme learning machine. Neurocomputing 102:31–44. doi:10.1016/j.neucom.2011.12.045
Yang Y, Wang Y, Yuan X (2012) Bidirectional extreme learning machine for regression problem and its learning effectiveness. IEEE Trans Neural Netw Learn Syst 23(9):1498–1505. doi:10.1109/TNNLS.2012.2202289
Jun W, Shitong W, Chung F (2011) Positive and negative fuzzy rule system, extreme learning machine and image classification. Int J Mach Learn Cyber 2(4):261–271. doi:10.1007/s13042-011-0024-1
Pouzols FM, Lendasse A (2010) Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol Syst 1(1):43–58. doi:10.1007/s12530-010-9005-y
Li G, Niu P (2011) An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl 22(3–4):803–810. doi:10.1007/s00521-011-0771-7
Zhai J-H, Xu H-Y, Wang X-Z (2012) Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput 16(9):1493–1502. doi:10.1007/s00500-012-0824-6
Zong W, Huang G-B, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242. doi:10.1016/j.neucom.2012.08.010
He Q, Shang T, Zhuang F, Shi Z (2013) Parallel extreme learning machine for regression based on MapReduce. Neurocomputing 102:52–58. doi:10.1016/j.neucom.2012.01.040
Wang D, Alhamdoosh M (2013) Evolutionary extreme learning machine ensembles with size control. Neurocomputing 102:98–110. doi:10.1016/j.neucom.2011.12.046
Feng G, Huang G-B, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357. doi:10.1109/TNN.2009.2024147
Wang L, Huang Y, Luo X, Wang Z, Luo S (2011) Image deblurring with filters learned by extreme learning machine. Neurocomputing 74(16):2464–2474. doi:10.1016/j.neucom.2010.12.035
Iosifidis A, Tefas A, Pitas I (2013) Dynamic action recognition based on dynemes and extreme learning machine. Pattern Recogn Lett 34(15):1890–1898. doi:10.1016/j.patrec.2012.10.019
Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210(2):132–146. doi:10.1016/j.jneumeth.2012.07.003
Chacko BP, Vimal Krishnan VR, Raju G, Babu Anto P (2011) Handwritten character recognition using wavelet energy and extreme learning machine. Int J Mach Learn Cyber 3(2):149–161. doi:10.1007/s13042-011-0049-5
Zheng W, Qian Y, Lu H (2012) Text categorization based on regularization extreme learning machine. Neural Comput Appl 22(3–4):447–456. doi:10.1007/s00521-011-0808-y
Hu X-F, Zhao Z, Wang S, Wang F-L, He D-K, Wu S-K (2007) Multi-stage extreme learning machine for fault diagnosis on hydraulic tube tester. Neural Comput Appl 17(4):399–403. doi:10.1007/s00521-007-0139-1
Suresh S, Venkatesh Babu R, Kim HJ (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Compt 9(2):541–552. doi:10.1016/j.asoc.2008.07.005
Chen FL, Ou TY (2011) Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert Syst Appl 38(3):1336–1345. doi:10.1016/j.eswa.2010.07.014
Malathi V, Marimuthu NS, Baskar S, Ramar K (2011) Application of extreme learning machine for series compensated transmission line protection. Eng Appl Artif Intel 24(5):880–887. doi:10.1016/j.engappai.2011.03.003
Zhao X (2010) A perturbed particle swarm algorithm for numerical optimization. Appl Soft Compt 10(1):119–124. doi:10.1016/j.asoc.2009.06.010
Zhao X, Liu Z, Yang X (2014) A multi-swarm cooperative multistage perturbation guiding particle swarm optimizer. Appl Soft Compt 22:77–93. doi:10.1016/j.asoc.2014.04.042
Li X, Yin M (2012) Application of differential evolution algorithm on self-potential data. PLoS One 7(12):e51199. doi:10.1371/journal.pone.0051199
Zou D, Liu H, Gao L, Li S (2011) An improved differential evolution algorithm for the task assignment problem. Eng Appl Artif Intel 24(4):616–624. doi:10.1016/j.engappai.2010.12.002
Li X, Yin M (2014) Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynam 77(1–2):61–71. doi:10.1007/s11071-014-1273-9
Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recogn 38(10):1759–1763. doi:10.1016/j.patcog.2005.03.028
Cao J, Lin Z, Huang G-B (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36(3):285–305. doi:10.1007/s11063-012-9236-y
Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35. doi:10.1007/s00366-011-0241-y
Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Abraham A, Carvalho A, Herrera F, Pai V (eds) Proceeding of world congress on nature & biologically inspired computing (NaBIC 2009), Coimbatore, India, December 2009. IEEE Publications, USA, pp 210–214
Wang G-G, Guo L, Duan H, Wang H (2014) A new improved firefly algorithm for global numerical optimization. J Comput Theor Nanosci 11(2):477–485. doi:10.1166/jctn.2014.3383
Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84. doi:10.1504/IJBIC.2010.032124
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. doi:10.1016/j.advengsoft.2013.12.007
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. doi:10.1177/003754970107600201
Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871. doi:10.1007/s00521-012-1304-8
Zou D, Gao L, Li S, Wu J (2011) Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl Soft Compt 11(2):1556–1564. doi:10.1016/j.asoc.2010.07.019
Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2318–2328. doi:10.1166/jctn.2013.3207
Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713. doi:10.1109/TEVC.2008.919004
Wang G-G, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9–10):2454–2462. doi:10.1016/j.apm.2013.10.052
Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097. doi:10.1007/s00521-014-1597-x
Li X, Yin M (2013) Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans Nanobiosci 12(4):343–353. doi:10.1109/TNB.2013.2294716
Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877. doi:10.1007/s00521-013-1433-8
Mirjalili S, Wang G-G, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435. doi:10.1007/s00521-014-1629-6
Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584. doi:10.1007/s00521-014-1640-y
Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218(22):11125–11137. doi:10.1016/j.amc.2012.04.069
Zhang Z, Zhang N, Feng Z (2014) Multi-satellite control resource scheduling based on ant colony optimization. Expert Syst Appl 41(6):2816–2823. doi:10.1016/j.eswa.2013.10.014
Zhang Z, Feng Z (2012) Two-stage updating pheromone for invariant ant colony optimization algorithm. Expert Syst Appl 39(1):706–712. doi:10.1016/j.eswa.2011.07.062
Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183. doi:10.1016/j.isatra.2014.03.018
Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255. doi:10.1007/s00521-012-1028-9
Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483. doi:10.1108/02644401211235834
Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845. doi:10.1016/j.cnsns.2012.05.010
Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370. doi:10.1016/j.neucom.2013.08.031
Guo L, Wang G-G, Gandomi AH, Alavi AH, Duan H (2014) A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138:392–402. doi:10.1016/j.neucom.2014.01.023
Wang G-G, Gandomi AH, Alavi AH (2013) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6):962–978. doi:10.1108/K-11-2012-0108
Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. doi:10.1016/j.swevo.2011.02.002
Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34. doi:10.1016/j.ins.2014.02.123
Acknowledgments
This work was supported by Research Fund for the Doctoral Program of Jiangsu Normal University (No. 13XLR041) and the National Natural Science Foundation of China (Nos. 61402207, 61100167, and 61272297), the Natural Science Foundation of Jiangsu Province, China, under Grant No. BK2011204, Qing Lan Project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, GG., Lu, M., Dong, YQ. et al. Self-adaptive extreme learning machine. Neural Comput & Applic 27, 291–303 (2016). https://doi.org/10.1007/s00521-015-1874-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-015-1874-3