Abstract
This work focuses on the Parareal parallel-in-time method and its application to the viscous Burgers equation. A crucial component of Parareal is the coarse time stepping scheme, which strongly impacts the convergence of the parallel-in-time method. Three choices of coarse time stepping schemes are investigated in this work: explicit Runge–Kutta, implicit–explicit Runge–Kutta, and implicit Runge–Kutta with semi-Lagrangian advection. Manufactured solutions are used to conduct studies, which provide insight into the viability of each considered time stepping method for the coarse time step of Parareal. One of our main findings is the advantageous convergence behavior of the semi-Lagrangian scheme for advective flows.
Similar content being viewed by others
Notes
See http://www.top500.org statistics.
References
Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997). https://doi.org/10.1016/S0168-9274(97)00056-1
Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zrah, G.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66(057), 701 (2002). https://doi.org/10.1103/PhysRevE.66.057701
Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 426–432. Springer, Berlin (2005). https://doi.org/10.1007/3-540-26825-1_43
Barros, S.R., Peixoto, P.S.: Computational aspects of harmonic wavelet Galerkin methods and an application to a precipitation front propagation model. Comput. Math. Appl. 61(4), 1217–1227 (2011)
Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163–170 (1915)
Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather prediction. Nature 525(7567), 47–55 (2015)
Bonaventura, L.: An Introduction to Semi-Lagrangian Methods for Geophysical Scale Flows. Lecture Notes ERCOFTAC Leonhard Euler Lectures. SAM-ETH, Zurich (2004)
Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948). https://doi.org/10.1016/S0065-2156(08)70100-5
Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010). https://doi.org/10.1137/09075740X
Côté, J.: Time-parallel algorithms for weather prediction and climate simulation. https://www.newton.ac.uk/files/seminar/20121023121012359-153396.pdf. Accessed 03 May 2017 (2012)
Durran, D.: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Texts in Applied Mathematics. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6412-0
Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000). https://doi.org/10.1023/A:1022338906936
Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012). https://doi.org/10.2140/camcos.2012.7.105
Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Method Eng. 58(9), 1397–1434 (2003). https://doi.org/10.1002/nme.860
Friedhoff, S., Falgout, R.D., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: A multigrid-in-time algorithm for solving evolution equations in parallel. In: Presented at Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17–22, 2013, http://www.osti.gov/scitech/servlets/purl/1073108 (2013)
Gander, M.J.: Analysis of the parareal algorithm applied to hyperbolic problems using characteristics. Boletin de la Sociedad Espanola de Matemática Aplicada 42, 21–35 (2008)
Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23321-5_3
Gander, M.J., Hairer, E.: Analysis for parareal algorithms applied to Hamiltonian differential equations. J. Comput. Appl. Math. 259, Part A(0):2–13. In: Proceedings of the Sixteenth International Congress on Computational and Applied Mathematics (ICCAM-2012), Ghent, Belgium, 9–13 July, 2012 (2014). https://doi.org/10.1016/j.cam.2013.01.011
Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007). https://doi.org/10.1137/05064607X
Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1977)
Hortal, M.: The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. 128(583), 1671–1687 (2002). https://doi.org/10.1002/qj.200212858314
Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995). https://doi.org/10.1137/0916050
Horton, G., Vandewalle, S., Worley, P.: An algorithm with polylog parallel complexity for solving parabolic partial differential equations. SIAM J. Sci. Comput. 16(3), 531–541 (1995). https://doi.org/10.1137/0916034
Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1), 139–181 (2003). https://doi.org/10.1016/S0168-9274(02)00138-1
Kooij, G.L., Botchev, M.A., Geurts, B.J.: A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations. J. Comput. Appl. Math. 316, 229–246 (2017). https://doi.org/10.1016/j.cam.2016.09.036. (Selected Papers from NUMDIFF-14)
LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM e-books, Society for Industrial and Applied Mathematics, Philadelphia (2007)
Lions, J.L., Maday, Y., Turinici, G.: A parareal in time discretization of PDE’s. Comptes Rendus de l’Académie des Sci.-Ser. I—Math. 332, 661–668 (2001). https://doi.org/10.1016/S0764-4442(00)01793-6
Lubich, C., Ostermann, A.: Multi-grid dynamic iteration for parabolic equations. BIT Numer. Math. 27(2), 216–234 (1987). https://doi.org/10.1007/BF01934186
Peixoto, P.S., Barros, S.R.: On vector field reconstructions for semi-Lagrangian transport methods on geodesic staggered grids. J. Comput. Phys. 273, 185–211 (2014)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., et al.: Numerical Recipes, vol. 3. Cambridge University Press, Cambridge (1989)
Reynolds-Barredo, J., Newman, D., Sanchez, R., Jenko, F.: A novel, semilagrangian, coarse solver for the Parareal technique and its application to 2D fluid drift-wave (BETA) and 5D gyrokinetic (GENE), turbulence simulations. In: APS Meeting Abstracts, vol 1, p 8128P (2013)
Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012). https://doi.org/10.1016/j.compfluid.2012.02.015
Schreiber, M., Peixoto, P.S., Haut, T., Wingate, B.: Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems. Int. J. High Perform. Comput. Appl. 29(3), 261–273 (2016)
Schreiber, M., Peixoto, P., Schmitt, A.: (2017) https://github.com/schreiberx/sweet. Accessed 4 May 2017
Staff, G.A., Rønquist, E.M.: Stability of the parareal algorithm. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 449–456. Springer, Berlin (2005). https://doi.org/10.1007/3-540-26825-1_46
Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models—a review. Mon. Weather Rev. 119(9), 2206–2223 (1991)
Steiner, J., Ruprecht, D., Speck, R., Krause, R.: Convergence of Parareal for the Navier–Stokes Equations Depending on the Reynolds Number, pp. 195–202. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10705-9_19
Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in software. Dr Dobbs J. 30(3), 202–210 (2005)
Swarztrauber, P.N., Sweet, R.A.: The Fourier and Cyclic Reduction Methods for Solving Poissons Equation. Wiley, New York (1996)
Vandewalle, S., Van de Velde, E.: Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1(1–4), 347–360 (1994). https://doi.org/10.13140/2.1.1146.1761
Wedi, N.P., Bauer, P., Deconinck, W., Diamantakis, M., Hamrud, M., Kuehnlein, C., Malardel, S., Mogensen, K., Mozdzynski, G., Smolarkiewicz, P.K.: The modelling infrastructure of the integrated forecasting system: recent advances and future challenges. European Centre for Medium-Range Weather Forecasts (2015)
Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics. Springer, Berlin (2009)
Williamson, D.L.: The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Japan Ser. II 85, 241–269 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Schmitt: The work of this author is supported by the ’Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt
Peixoto: Acknowledges the Sao Paulo Research Foundation (FAPESP) under the Grant Number 2016/18445-7 and the National Science and Technology Development Council (CNPq) under Grant Number 441328/2014-8.
Rights and permissions
About this article
Cite this article
Schmitt, A., Schreiber, M., Peixoto, P. et al. A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation. Comput. Visual Sci. 19, 45–57 (2018). https://doi.org/10.1007/s00791-018-0294-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-018-0294-1