Abstract
In this paper, we present two new methods for solving convex mixed-integer nonlinear programming problems based on the outer approximation method. The first method is inspired by the level method and uses a regularization technique to reduce the step size when choosing new integer combinations. The second method combines ideas from both the level method and the sequential quadratic programming technique and uses a second order approximation of the Lagrangean when choosing the new integer combinations. The main idea behind the methods is to choose the integer combination more carefully at each iteration, in order to obtain the optimal solution in fewer iterations compared to the original outer approximation method. We prove rigorously that both methods will find and verify the optimal solution in a finite number of iterations. Furthermore, we present a numerical comparison of the methods based on 109 test problems to illustrate their advantages.
Similar content being viewed by others
References
Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Berlin (2014)
Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032
Biegler, L.T., Grossmann, I.E.: Retrospective on optimization. Comput. Chem. Eng. 28(8), 1169–1192 (2004)
Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discr. Optim. 5(2), 186–204 (2008). https://doi.org/10.1016/j.disopt.2006.10.011
Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119(2), 331–352 (2009)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Currie, J., Wilson, D.I.: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user. In: Sahinidis, N., Pinto, J. (eds.) Foundations of Computer-Aided Process Operations. Savannah, Georgia (2012)
Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. B 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263
Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)
den Hertog, D., Kaliski, J., Roos, C., Terlaky, T.: A logarithmic barrier cutting plane method for convex programming. Ann. Oper. Res. 58(2), 67–98 (1995)
de Oliveira, W.: Regularized optimization methods for convex MINLP problems. TOP 24(3), 665–692 (2016)
Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)
Floudas, C.A.: Deterministic global optimization. Theory, methods and applications In: Nonconvex Optimization and its Applications, vol. 37. Springer, US (2000)
GAMSWorld: mixed-integer nonlinear programming library. http://www.gamsworld.org/minlp/minlplib2/html/ (2016). Accessed 24 Nov 2016
Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
Gershgorin, S.A.: Uber die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na 6, 749–754 (1931)
Grossmann, I.E., Viswanathan, J., Vecchietti, A., Raman, R., Kalvelagen, E.: GAMS/DICOPT: A Discrete Continuous Optimization Package (2002)
Gurobi Optimization, I.: Gurobi optimizer reference manual. http://www.gurobi.com (2016)
IBM Corp., IBM: V12.6: User’s Manual for CPLEX. Int. Bus. Mach. Corp. 12(1), 481 (2009)
Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)
Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69(1–3), 89–109 (1995)
Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)
Kronqvist, J., Lundell, A., Westerlund, T.: Reformulations for utilizing separability when solving convex MINLP problems. J. Glob. Optim. 71(3), 571–592 (2018). https://doi.org/10.1007/s10898-018-0616-3
Lee, J., Leyffer, S. (eds.): Mixed Integer Nonlinear Programming, vol. 154. Springer, Berlin (2011)
Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995)
Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2004)
Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)
Slater, M., et al.: Lagrange multipliers revisited. Technical report, Cowles Foundation for Research in Economics, Yale University (1959)
Trespalacios, F., Grossmann, I.E.: Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tech. 86(7), 991–1012 (2014). https://doi.org/10.1002/cite.201400037
Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Wei, Z., Ali, M.M.: Outer approximation algorithm for one class of convex mixed-integer nonlinear programming problems with partial differentiability. J. Optim. Theory Appl. 167(2), 644–652 (2015). https://doi.org/10.1007/s10957-015-0715-y
Westerlund, T., Petterson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)
Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3(3), 253–280 (2002)
Wolfe, P.: A duality theorem for non-linear programming. Q. Appl. Math. 19(3), 239–244 (1961)
Zaourar, S., Malick, J.: Quadratic stabilization of Benders decomposition. https://hal.archives-ouvertes.fr/hal-01181273 (2014). Working paper or preprint
Acknowledgements
Jan Kronqvist is grateful for the grants given by Walter Ahlström foundation, Svenska tekniska vetenskapsakademien i Finland, Tekniikan edistämissäätiö, TFIF and Waldemar von Frenckells stiftelse, which made the research visit at Carnegie Mellon University possible. David E. Bernal and Ignacio E. Grossmann would like to thank the Center Advanced Process Decision Making (CAPD) for its financial support. The authors would like to acknowledge the Dagstuhl Seminar 18081 on Designing and Implementing Algorithms for Mixed-Integer Nonlinear Optimization, where an early version of the results shown in this manuscript were presented and discussed.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kronqvist, J., Bernal, D.E. & Grossmann, I.E. Using regularization and second order information in outer approximation for convex MINLP. Math. Program. 180, 285–310 (2020). https://doi.org/10.1007/s10107-018-1356-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-018-1356-3