Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Artery/Vein Vessel Tree Identification in Near-Infrared Reflectance Retinographies

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

An accurate identification of the retinal arteries and veins is a relevant issue in the development of automatic computer-aided diagnosis systems that facilitate the analysis of different relevant diseases that affect the vascular system as diabetes or hypertension, among others. The proposed method offers a complete analysis of the retinal vascular tree structure by its identification and posterior classification into arteries and veins using optical coherence tomography (OCT) scans. These scans include the near-infrared reflectance retinography images, the ones we used in this work, in combination with the corresponding histological sections. The method, firstly, segments the vessel tree and identifies its characteristic points. Then, Global Intensity-Based Features (GIBS) are used to measure the differences in the intensity profiles between arteries and veins. A k-means clustering classifier employs these features to evaluate the potential of artery/vein identification of the proposed method. Finally, a post-processing stage is applied to correct misclassifications using context information and maximize the performance of the classification process. The methodology was validated using an OCT image dataset retrieved from 46 different patients, where 2,392 vessel segments and 97,294 vessel points were manually labeled by an expert clinician. The method achieved satisfactory results, reaching a best accuracy of 93.35% in the identification of arteries and veins, being the first proposal that faces this issue in this image modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Albrecht P, Ringelstein M, Müller A, Keser N, Dietlein T, Lappas A, Foerster A, Hartung H, Aktas O, Methner A: Degeneration of retinal layers in multiple sclerosis subtypes quantified by Optical Coherence Tomography. Mult Scler J 18(10): 1422–1429, 2012

    Article  CAS  Google Scholar 

  2. Baamonde S, de Moura J, Novo J, Ortega M (2017) Automatic detection of epiretinal membrane in OCT images by means of local luminosity patterns. In: International work-conference on artificial neural networks, pp 222–235

  3. Barreira N, Ortega M, Rouco J, Penedo M, Pose-Reino A, Mariño C: Semi-automatic procedure for the computation of the arteriovenous ratio in retinal images. Int J Comput Vis Biomechan 3(2): 135–147, 2010

    Google Scholar 

  4. Bellazzi R, Montani S, Riva A, Stefanelli M: Web-based telemedicine systems for home-care: technical issues and experiences. Comput Methods Programs Biomed 64(3): 175–187, 2001

    Article  CAS  Google Scholar 

  5. Biswas S, Lovell BC (2007) Bézier and splines in image processing and machine vision. Science and Business Media:109–121

  6. Blanco M, Penedo M, Barreira N, Penas M, Carreira MJ (2006) Localization and extraction of the optic disc using the fuzzy circular hough transform. In: International conference on artificial intelligence and soft computing, pp 712–721

  7. de Boor C: A practical guide to splines. Appl Math Sci 27: 1–7, 1978

    Google Scholar 

  8. Bowd C, Weinreb RN, Williams JM, Zangwill LM: The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with Optical Coherence Tomography. Arch Ophthalmol 118(1): 22–26, 2000

    Article  CAS  Google Scholar 

  9. Caderno I, Penedo M, Barreira N, Mariño C, Gonzalez F: Precise detection and measurement of the retina vascular tree. Pattern Recogn Image Anal (Adv Math Theory Appl) 15(2): 523–526, 2005

    Google Scholar 

  10. Calvo D, Ortega M, Penedo M, Rouco J: Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images. Comput Methods Programs Biomed 103(1): 28–38, 2011

    Article  Google Scholar 

  11. Canny J (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6):679–698

    Article  Google Scholar 

  12. Dashtbozorg B, Mendonċa AM, Campilho A (2013) Automatic classification of retinal vessels using structural and intensity information. In: Iberian conference on pattern recognition and image analysis, pp 600–607

    Chapter  Google Scholar 

  13. Diamond E: Manual of diagnostic imaging: a clinician’s guide to clinical problem solving. Radiology 157(1): 18–18, 1985

    Article  Google Scholar 

  14. Dougherty E: Mathematical morphology in image processing New York: CRC Press, 1992

    Google Scholar 

  15. Earley M: Clinical anatomy of the eye. Optom Vis Sci 77(5): 231–232, 2000

    Article  Google Scholar 

  16. Fercher AF, Drexler W, Hitzenberger CK, Lasser T: Optical Coherence Tomography-principles and applications. Rep Progress Phys 66(2): 239, 2003

    Article  Google Scholar 

  17. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention, pp 130–137

    Chapter  Google Scholar 

  18. Gómes E, Del Pozo F, Quiles J, Arredondo M, Rahms H, Sanz M, Cano P, et al.: A telemedicine system for remote cooperative medical imaging diagnosis. Comput Methods Programs Biomed 49(1): 37–48, 1996

    Article  Google Scholar 

  19. González-López A, Ortega M, Penedo M, Charlón P (2014) Automatic robust segmentation of retinal layers in OCT images with refinement stages. In: International conference image analysis and recognition, pp 337–345

    Google Scholar 

  20. Grisan E, Ruggeri A (2003) A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th annual international conference of the IEEE, vol 1, pp 890–893

  21. Ho A: Retina: Color Atlas & Synopsis of Clinical Ophthalmology (Wills Eye Hospital Series) New York: McGraw-Hill Professional, 2003

    Google Scholar 

  22. Huang T, Yang G, Tang G: A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process 27(1): 13–18, 1979

    Article  Google Scholar 

  23. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J: Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12): 2269–2280, 1999

    Article  CAS  Google Scholar 

  24. Ikram M, De Jong F, Bos M, Vingerling J, Hofman A, Koudstaal PJ, De Jong P, Breteler M: Retinal vessel diameters and risk of stroke the rotterdam study. Neurology 66(9): 1339–1343, 2006

    Article  CAS  Google Scholar 

  25. Jonas JB, Schmidt AM, Müller-Bergh J, Schlötzer-Schrehardt U, Naumann G: Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 33(6): 2012–2018, 1992

    CAS  PubMed  Google Scholar 

  26. Joshi VS, Reinhardt JM, Garvin MK, Abramoff MD: Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks. PloS One 9(2): e88,061, 2014

    Article  Google Scholar 

  27. Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active contour models. In: 1St international conference on computer vision, vol 259, pp 268

  28. Kondermann C, Kondermann D, Yan M, et al. (2007) Blood vessel classification into arteries and veins in retinal images. In: Proceedings of SPIE Medical Imaging, pp 651,247–6512,479

  29. López AM, Lloret D, Serrat J, Villanueva JJ: Multilocal creaseness based on the level-set extrinsic curvature. Comput Vis Image Underst 77(2): 111–144, 2000

    Article  Google Scholar 

  30. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol 1, pp 281–297

  31. de Moura J, Novo J, Charlón P, Barreira N, Ortega M: Enhanced visualization of the retinal vasculature using depth information in OCT. Med Biol Eng Comput 55(12): 2209–2225, 2017

    Article  Google Scholar 

  32. de Moura J, Novo J, Rouco J, Penedo M, Ortega M (2017) Automatic identification of intraretinal cystoid regions in Optical Coherence Tomography. In: Conference on artificial intelligence in medicine in Europe, pp 305–315

  33. Novo J, Penedo M, Santos J (2008) Optic disc segmentation by means of GA-optimized Topological Active Nets. In: International conference image analysis and recognition, pp 807–816

  34. Ortega M, Barreira N, Novo J, Penedo M, Pose-Reino A, Gómez-Ulla F: Sirius: a web-based system for retinal image analysis. Int J Med Inf 79(10): 722–732, 2010

    Article  CAS  Google Scholar 

  35. Philip KP, Dove EL, McPherson DD, Gotteiner NL, Stanford W, Chandran KB: The fuzzy hough transform-feature extraction in medical images. IEEE Trans Med Imaging 13(2): 235–240, 1994

    Article  CAS  Google Scholar 

  36. Puzyeyeva O, Lam WC, Flanagan JG, Brent MH, Devenyi RG, Mandelcorn MS, Wong T, Hudson C: High-resolution Optical Coherence Tomography retinal imaging: a case series illustrating potential and limitations. J Ophthalmol 2011: 1–6, 2011

    Article  Google Scholar 

  37. Relan D, MacGillivray T, Ballerini L, Trucco E (2013) Retinal vessel classification: sorting arteries and veins. In: Engineering in medicine and biology society, 2013 35th annual international conference of the IEEE, pp 7396–7399

  38. Relan D, MacGillivray T, Ballerini L, Trucco E (2014) Automatic retinal vessel classification using a least square-support vector machine in vampire. In: 2014 36th annual international conference of the IEEE Engineering in medicine and biology society, pp 142–145

  39. Rothaus K, Jiang X, Rhiem P: Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image Vis Comput 27(7): 864–875, 2009

    Article  Google Scholar 

  40. Samagaio G, Estévez A, de Moura J, Novo J, Fernandez MI: Ortega, m.: automatic macular edema identification and characterization using OCT images. Comput Methods Programs Biomed 21: 327–335, 2018

    Google Scholar 

  41. Sánchez L, Barreira N, Penedo M, de Tuero GC (2014) Computer aided diagnosis system for retinal analysis: automatic assessment of the vascular tortuosity. In: Studies in health technology and informatics: Innovation in medicine and healthcare, pp 55–64

  42. Sánchez-Tocino H., Alvarez-Vidal A, Maldonado MJ, Moreno-Montaṅés J, Garcia-Layana A: Retinal thickness study with Optical Coherence Tomography in patients with diabetes. Invest Ophthalmol Vis Sci 43(5): 1588–1594, 2002

    PubMed  Google Scholar 

  43. Schmitt JM: Optical Coherence Tomography (OCT): a review. IEEE J Sel Top Quantum Electron 5(4): 1205–1215, 1999

    Article  CAS  Google Scholar 

  44. Simó A, de Ves E: Segmentation of macular fluorescein angiographies. A statistical approach. Pattern Recogn 34(4): 795–809, 2001

    Article  Google Scholar 

  45. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83(8): 902–910, 1999

    Article  CAS  Google Scholar 

  46. Vázquez S, Cancela B, Barreira N, Penedo M, Rodríguez-blanco M, Seijo MP, de Tuero GC, Barceló MA, Saez M: Improving retinal artery and vein classification by means of a minimal path approach. Mach Vis Appl 24(5): 919–930, 2013

    Article  Google Scholar 

  47. Williams ZY, Schuman JS, Gamell L, Nemi A, Hertzmark E, Fujimoto JG, Mattox C, Simpson J, Wollstein G: Optical Coherence Tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Amer J Ophthalmol 134(4): 538–546, 2002

    Article  Google Scholar 

  48. Wong TY, Klein R, Sharrett AR, Schmidt MI, Pankow JS, Couper DJ, Klein BE, Hubbard LD, Duncan BB: Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. J Amer Med Assoc 287(19): 2528–2533, 2002

    Article  Google Scholar 

  49. Xu X, Ding W, Abràmoff MD, Cao R: An improved arteriovenous classification method for the early diagnostics of various diseases in retinal image. Comput Methods Programs Biomed 141: 3–9, 2017

    Article  Google Scholar 

  50. Yang Y, Bu W, Wang K, Zheng Y, Wu X (2016) Automated artery-vein classification in fundus color images. In: International conference of young computer scientists, engineers and educators, pp 228–237

    Google Scholar 

  51. Yu S, Wei Z, Deng RH, Yao H, Zhao Z, Ngoh LH, Wu Y (2008) A tele-ophthalmology system based on secure video-conferencing and white-board. In: 2008. Healthcom 2008. 10th international conference E-health networking, applications and services, pp 51–52

Download references

Funding

This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research project and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund—ERDF); the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim de Moura.

Ethics declarations

The local ethics committee approved the study and the tenets of the Declaration of Helsinki were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, J., Novo, J., Rouco, J. et al. Artery/Vein Vessel Tree Identification in Near-Infrared Reflectance Retinographies. J Digit Imaging 32, 947–962 (2019). https://doi.org/10.1007/s10278-019-00235-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-019-00235-x

Keywords