Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Retinal Vascularity Identification and Artery/Vein Classification Using Near-Infrared Reflectance Retinographies

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics – Theory and Applications (VISIGRAPP 2017)

Abstract

The retinal microcirculation structure is commonly used as an important source of information in many medical specialities for the diagnosis of relevant diseases such as, for reference, hypertension, arteriosclerosis, or diabetes. Also, the evaluation of the cerebrovascular and cardiovascular disease progression could be performed through the identification of abnormal signs in the retinal vasculature architecture. Given that these alterations affect differently the artery and vein vascularities, a precise characterization of both blood vessel types is also crucial for the diagnosis and treatment of a significant variety of retinal and systemic pathologies. In this work, we present a fully automatic method for the retinal vessel identification and classification in arteries and veins using Optical Coherence Tomography scans. In our analysis, we used a dataset composed by 30 near-infrared reflectance retinography images from different patients, which were used to test and validate the proposed method. In particular, a total of 597 vessel segments were manually labelled by an expert clinician, being used as groundtruth for the validation process. As result, this methodology achieved a satisfactory performance in the complex issue of the retinal vessel tree identification and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eichmann, A., Yuan, L., Moyon, D., Lenoble, F., Pardanaud, L., Breant, C.: Vascular development: from precursor cells to branched arterial and venous networks. Int. J. Dev. Biol. 49(2–3), 259–267 (2003)

    Google Scholar 

  2. de Moura, J., Novo, J., Charlón, P., Barreira, N., Ortega, M.: Enhanced visualization of the retinal vasculature using depth information in OCT. Med. Biol. Eng. Comput. 55(12), 2209–2225 (2017)

    Article  Google Scholar 

  3. Neubauer, A.S., Luedtke, M., Haritoglou, C., Priglinger, S., Kampik, A.: Retinal vessel analysis reproducibility in assessing cardiovascular disease. Optom. Vis. Sci. 85(4), E247–E254 (2008)

    Article  Google Scholar 

  4. Nguyen, T.T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Curr. Diab. Rep. 9(4), 277–283 (2009)

    Article  Google Scholar 

  5. Klein, R., et al.: Are retinal arteriolar abnormalities related to atherosclerosis?: the atherosclerosis risk in communities study. Arterioscler. Thromb. Vasc. Biol. 20(6), 1644–1650 (2000)

    Article  Google Scholar 

  6. Hubbard, L.D., et al.: Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study1. Ophthalmology 106(12), 2269–2280 (1999)

    Article  Google Scholar 

  7. Bourne, R.R.A., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health 5(9), e888–e897 (2017)

    Article  Google Scholar 

  8. MacGillivray, T.J., Trucco, E., Cameron, J.R., Dhillon, B., Houston, J.G., Van Beek, E.J.R.: Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br. J. Radiol. 87(1040), 20130832 (2014)

    Article  Google Scholar 

  9. Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E.Y.K., Laude, A.: Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013)

    Article  Google Scholar 

  10. Novo, J., et al.: Hydra: a web-based system for cardiovascular analysis, diagnosis and treatment. Comput. Methods Programs Biomed. 139, 61–81 (2017)

    Article  Google Scholar 

  11. Samagaio, G., Estévez, A., de Moura, J., Novo, J., Isabel Fernandez, M., Ortega, M.: Automatic macular Edema identification and characterization using OCT images. Comput. Methods Programs Biomed. 163, 47–63 (2018)

    Article  Google Scholar 

  12. Liu, D.T., Xu, X.W.: A review of web-based product data management systems. Comput. Ind. 44(3), 251–262 (2001)

    Article  Google Scholar 

  13. Kalev-Landoy, M., Day, A.C., Cordeiro, M.F., Migdal, C.: Optical coherence tomography in anterior segment imaging. Acta Ophthalmol. 85(4), 427–430 (2007)

    Article  Google Scholar 

  14. Michelson, A.A., Morley, E.W.: On the relative motion of the earth and of the luminiferous ether. Sidereal Messenger 6, 306–310 (1887)

    MATH  Google Scholar 

  15. Joshi, V.S., Reinhardt, J.M., Garvin, M.K., Abramoff, M.D.: Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks. PloS One 9(2), e88061 (2014)

    Article  Google Scholar 

  16. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2014)

    Article  MathSciNet  Google Scholar 

  17. Yang, Y., Bu, W., Wang, K., Zheng, Y., Wu, X.: Automated artery-vein classification in fundus color images. In: Che, W., et al. (eds.) ICYCSEE 2016. CCIS, vol. 623, pp. 228–237. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2053-7_21

    Chapter  Google Scholar 

  18. Kondermann, C., Kondermann, D., Yan, M.: Blood vessel classification into arteries and veins in retinal images. In: Medical Imaging 2007: Image Processing, vol. 6512, pp. 651247 (2007)

    Google Scholar 

  19. Relan, D., MacGillivray, T., Ballerini, L., Trucco, E.: Retinal vessel classification: sorting arteries and veins. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7396–7399 (2013)

    Google Scholar 

  20. Vázquez, S.G., et al.: Improving retinal artery and vein classification by means of a minimal path approach. Mach. Vis. Appl. 24(5), 919–930 (2013)

    Article  Google Scholar 

  21. Welikala, R.A., et al.: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput. Biol. Med. 90, 23–32 (2017)

    Article  Google Scholar 

  22. Girard, F., Cheriet, F.: Artery/vein classification in fundus images using CNN and likelihood score propagation. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 720–724 (2017)

    Google Scholar 

  23. Huang, F., Dashtbozorg, B., ter Haar Romeny, B.M.: Artery/vein classification using reflection features in retina fundus images. Mach. Vis. Appl. 29(1), 23–34 (2018)

    Article  Google Scholar 

  24. Zou, B.-J., Chen, Y., Zhu, C.-Z., Chen, Z.-L., Zhang, Z.-Q.: Supervised vessels classification based on feature selection. J. Comput. Sci. Technol. 32(6), 1222–1230 (2017)

    Article  Google Scholar 

  25. de Moura, J., Novo, J., Ortega, M., Barreira, N., Charlón, P.: Artery/vein classification of blood vessel tree in retinal imaging. In: VISIGRAPP (4: VISAPP), pp. 371–377 (2017)

    Google Scholar 

  26. Calvo, D., Ortega, M., Penedo, M.G., Rouco, J.: Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images. Comput. Methods Programs Biomed. 103(1), 28–38 (2011)

    Article  Google Scholar 

  27. Caderno, I., Penedo, M., Barreira, N., Mariño, C., González, F.: Precise detection and measurement of the retina vascular tree. Pattern Recog. Image Anal. 15(2), 523 (2005)

    Google Scholar 

  28. Blanco, M., Penedo, M.G., Barreira, N., Penas, M., Carreira, M.J.: Localization and extraction of the optic disc using the fuzzy circular hough transform. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 712–721. Springer, Heidelberg (2006). https://doi.org/10.1007/11785231_74

    Chapter  Google Scholar 

  29. Kittler, J.: On the accuracy of the sobel edge detector. Image Vis. Comput. 1(1), 37–42 (1983)

    Article  Google Scholar 

  30. Philip, K.P., Dove, E.L., McPherson, D.D., Gotteiner, N.L., Stanford, W., Chandran, K.B.: The fuzzy Hough transform-feature extraction in medical images. IEEE Trans. Med. Imaging 13(2), 235–240 (1994)

    Article  Google Scholar 

  31. Grisan, E., Ruggeri, A.: A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003, vol. 1, pp. 890–893 (2003)

    Google Scholar 

  32. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 281–297 (1967)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim de Moura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Moura, J., Novo, J., Ortega, M., Barreira, N., Charlón, P. (2019). Automatic Retinal Vascularity Identification and Artery/Vein Classification Using Near-Infrared Reflectance Retinographies. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics – Theory and Applications. VISIGRAPP 2017. Communications in Computer and Information Science, vol 983. Springer, Cham. https://doi.org/10.1007/978-3-030-12209-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12209-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12208-9

  • Online ISBN: 978-3-030-12209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics