Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Low temperature co-fired ceramic (LTCC) based microfluidic devices are being developed for point-of-care biomedical and environmental sensing to enable personalized health care. This article reviews the prospects of LTCC technology for microfluidic device development and its advantages and limitations in processing capabilities compared to silicon, glass and polymer processing. The current state of the art in LTCC-based processing techniques for fabrication of microfluidic components such as microchannels, chambers, microelectrodes and valves is presented. LTCC-based biosensing applications are discussed under the classification of (a) microreactors, (b) whole cell-based and (c) protein biosensors. Biocompatibility of LTCC pertaining to the development of biosensors and whole cell sensors is also discussed. Other significant applications of LTCC microfluidic systems for detection of environmental contaminants and toxins are also presented. Technological constraints and advantages of LTCC-based microfluidic system are elucidated in the conclusion. The LTCC-based microfluidic devices provide a viable platform for the development of point-of-care diagnostic systems for biosensing and environmental sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Achmann S, Hämmerle M et al (2008) Miniaturized low temperature co-fired ceramics (LTCC) biosensor for amperometric gas sensing. Sens Actuators B Chem 135(1):89–95

    Article  Google Scholar 

  • Aguilar ZP, Arumugam P et al (2006) Study of magnetohydrodynamic driven flow through LTCC channel with self-contained electrodes. J Electroanal Chem 591(2):201–209

    Article  Google Scholar 

  • Almeida SAA, Arasa E et al (2011) Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim. Biosens Bioelectron 30(1):197–203

    Article  Google Scholar 

  • Alves-Segundo R, Ibañez-Garcia N et al (2010) Towards a monolithically integrated microsystem based on the green tape ceramics technology for spectrophotometric measurements. Determination of chromium (VI) in water. Microchim Acta 172(1–2):225–232

    Google Scholar 

  • Anderson JR, Chiu DT et al (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72(14):3158–3164

    Article  Google Scholar 

  • Barry R, Ivanov D (2004) Microfluidics in biotechnology. J Nanobiotechnol 2(1):2

    Article  Google Scholar 

  • Bartsch de Torres H, Rensch C et al (2010) Thick film flow sensor for biological microsystems. Sens Actuators A Phys 160(1–2):109–115

    Article  Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287

    Article  Google Scholar 

  • Bembnowicz P, Golonka LJ (2010) Integration of transparent glass window with LTCC technology for μTAS application. J Eur Ceram Soc 30(3):743–749

    Article  Google Scholar 

  • Bembnowicz P, Małodobra M et al (2010) Preliminary studies on LTCC based PCR microreactor. Sens Actuators B Chem 150(2):715–721

    Article  Google Scholar 

  • Bembnowicz P, Herbut P et al (2011) The low temperature co-fired ceramics (LTCC) chip for polymerase chain reaction (PCR) application. Optica Applicata 41(2):10

    Google Scholar 

  • Benito-Lopez F, Coyle S et al (2010) Sweat-on-a-chip: analysing sweat in real time with disposable micro-devices. IEEE Sensors, pp 160–163

  • Benito-Lopez F, Coyle S et al (2009) Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry 1(1):1103–1106

    Article  Google Scholar 

  • Birol H, Maeder T et al (2007) Application of graphite-based sacrificial layers for fabrication of LTCC (low temperature co-fired ceramic) membranes and micro-channels. J Micromech Microeng 17(1):50

    Article  Google Scholar 

  • Browne A, Ahn C (2011) An in-line microfluidic blood sampling interface between patients and saline infusion systems. Biomed Microdevices 13(4):661–669

    Article  Google Scholar 

  • Cheng S, Wu Z (2012) Microfluidic electronics. Lab on a Chip 12(16):2782–2791

  • Choban ER, Markoski LJ et al (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128(1):54–60

    Article  Google Scholar 

  • Ciosek P, Zawadzki K et al (2008) Microelectrode array fabricated in low temperature cofired ceramic (LTCC) technology. J Solid State Electrochem 13(1):129–135

    Article  Google Scholar 

  • Ciosek P, Zawadzki K et al (2009) Monitoring of cell cultures with LTCC microelectrode array. Anal Bioanal Chem 393(8):2029–2038

    Article  Google Scholar 

  • Delattre C, Allier CP et al (2012) Macro to microfluidics system for biological environmental monitoring. Biosens Bioelectron 36(1):230–235

    Article  Google Scholar 

  • DeWitt SH (1999) Micro reactors for chemical synthesis. Curr Opin Chem Biol 3(3):350–356

    Article  Google Scholar 

  • Eddings MA, Johnson MA et al (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(6):067001

    Article  Google Scholar 

  • Fakunle ES, Fritsch I (2010) Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays. Anal Bioanal Chem 398(6):2605–2615

    Article  Google Scholar 

  • Fakunle ES, Aguilar ZP et al (2006) Evaluation of screen-printed gold on low-temperature co-fired ceramic as a substrate for the immobilization of electrochemical immunoassays. Langmuir 22(25):10844–10853

    Article  Google Scholar 

  • Farhan Shafique M, Laister A et al (2011) Fabrication of embedded microfluidic channels in low temperature co-fired ceramic technology using laser machining and progressive lamination. J Eur Ceram Soc 31(13):2199–2204

    Article  Google Scholar 

  • Gervais L, de Rooij N et al (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23(24):H151–H176

    Article  Google Scholar 

  • Golonka LJ (2006) Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems. Bull Polish Acad Sci Tech Sci 54(2)

  • Golonka LJ, Zawada T et al (2006) LTCC microfluidic system. Int J Appl Ceram Technol 3(2):150–156

    Article  Google Scholar 

  • Golonka L, Bembnowicz P et al (2011) Low temperature co-fired ceramics (LTCC) microsysttems. Optica Applicata 41(2):383–388

    Google Scholar 

  • Gongora-Rubio MR, Espinoza-Vallejos P et al (2001) Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens Actuators A Phys 89(3):222–241

    Article  Google Scholar 

  • Gongora-Rubio MR, Fontes MBA et al (2004) LTCC manifold for heavy metal detection system in biomedical and environmental fluids. Sens Actuators B Chem 103(1–2):468–473

    Article  Google Scholar 

  • Groß GA, Henkel T, Schneider S, Boskovic D, Köhler JM (2008) Fabrication and fluidic characterization of static micromixers made of low temperature cofired ceramic (LTCC). Chem Eng Sci 63:2773–2784

    Google Scholar 

  • Ibáñez-García N, Alonso J et al (2008) Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems. TrAC Trends Anal Chem 27(1):24–33

    Article  Google Scholar 

  • Ibáñez-García N, Baeza M et al (2010) Biparametric potentiometric analytical microsystem based on the green tape technology. Electroanalysis 22(20):2376–2382

    Article  Google Scholar 

  • Jones WK, Liu Y et al (2000) Chemical, structural, and mechanical properties of the LTCC tapes. Int J Microcircuits Electron Packag 23(4):469–473

    Google Scholar 

  • Karle M, Miwa J et al (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290

    Article  Google Scholar 

  • Karlsson R, Michaelsson A et al (1991) Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 145(1–2):229–240

    Article  Google Scholar 

  • Kerman K, Kobayashi M et al (2004) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15(2):R1

    Article  Google Scholar 

  • Kordas K, Pap AE et al (2005) Laser-induced surface activation of LTCC materials for chemical metallization. IEEE Trans Adv Packag 28(2):259–263

    Google Scholar 

  • Linder V (2007) Microfluidics at the crossroad with point-of-care diagnostics. Analyst 132(12):1186–1192

    Article  MathSciNet  Google Scholar 

  • Malecha K, Golonka LJ (2006) CFD simulations of LTCC based microsystems. In: Electronics Technology, 2006. ISSE ‘06. 29th International Spring Seminar

  • Malecha K, Golonka LJ (2008) Microchannel fabrication process in LTCC ceramics. Microelectron Reliab 48(6):866–871

    Article  Google Scholar 

  • Malecha K, Golonka LJ (2009) Three-dimensional structuration of zero-shrinkage LTCC ceramics for microfluidic applications. Microelectron Reliab 49(6):585–591

    Article  Google Scholar 

  • Malecha K, Gancarz I et al (2009a) A PDMS/LTCC bonding technique for microfluidic application. J Micromech Microeng 19(10):105016

    Article  Google Scholar 

  • Malecha K, Golonka LJ et al (2009b) Serpentine microfluidic mixer made in LTCC. Sens Actuators B Chem 143:400–413

    Article  Google Scholar 

  • Malecha K, Pijanowska DG et al (2009c) LTCC microreactor for urea determination in biological fluids. Sens Actuators B Chem 141(1):301–308

    Article  Google Scholar 

  • Malecha K, Czok M et al (2011a) Micro ceramic cell analyzer (MCCA)—preliminary results. Microelectron Reliab 51(7):1250–1252

    Article  Google Scholar 

  • Malecha K, Pijanowska DG et al (2011b) Low temperature co-fired ceramic (LTCC)-based biosensor for continuous glucose monitoring. Sens Actuators B Chem 155(2):923–929

    Article  Google Scholar 

  • Malodobra M, Bembnowicz P et al (2011) The specificity, sensitivity and efficiency of the PCR microsystem based on LTCC technology. In: Proceedings of the 11th WSEAS international conference on Applied informatics and communications, and Proceedings of the 4th WSEAS International conference on Biomedical electronics and biomedical informatics, and Proceedings of the international conference on Computational engineering in systems applications. World Scientific and Engineering Academy and Society (WSEAS), Florence, Italy, pp 327–331

  • Markowski P, Zwierkowska E et al (2012) Properties of glass-less photoimageable paste for mulitlayer LTCC structures fabrication. In: IMAPS/ACerS 8th international CICMT conference and exhibition, Erfurt, Germany

  • Marre S, Roig Y et al (2012) Supercritical microfluidics: opportunities in flow-through chemistry and materials science. J Supercrit Fluids 66:251–264

    Google Scholar 

  • Mercke W, Dziubla T et al (2012) Biocompatibility evaluation of human umbilical vein endothelial cells directly onto low-temperature co-fired ceramic materials for microfluidic applications. In: IMAPS/ACerS 8th international CICMT conference and exhibition, Erfurt, Germany

  • Olivé-Monllau R, Martínez-Cisneros CS et al (2011) Integration of a sensitive carbon nanotube composite electrode in a ceramic microanalyzer for the amperometric determination of free chlorine. Sens Actuators B Chem 151(2):416–422

    Article  Google Scholar 

  • Peterson KA, Patel KD et al (2005) Novel microsystem applications with new techniques in low-temperature co-fired ceramics. Int J Appl Ceram Technol 2(5):345–363

    Article  Google Scholar 

  • Psaltis D, Quake SR et al (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386

    Article  Google Scholar 

  • Ramos FM, Lopez-Gandara C et al (2009) Monolithic ceramic technology for sensing devices. Spanish conference on electron devices. CDE 2009

  • Roberge DM, Ducry L et al (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28(3):318–323

    Article  Google Scholar 

  • Rusu C, Persson K et al (2006) LTCC interconnects in microsystems. J Micromech Microeng 16(6):S13

    Article  Google Scholar 

  • Sadler DJ, Changrani R et al (2003) Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices. Compon Packag Technol IEEE Trans 26(2):309–316

    Article  Google Scholar 

  • Satarkar NS, Zhang W et al (2009) Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. Lab Chip 9(12):1773–1779

    Article  Google Scholar 

  • Schlottig G, Rebenklau L et al (2006) Modeling LTCC-based microchannels using a network approach. In: 1st Electronics system integration technology conference, 2006

  • Shafique MF, Robertson ID (2009) Rapid prototyping of LTCC microwave circuits using laser machining. In: Microwave Symposium Digest, 2009. MTT ‘09. IEEE MTT-S International

  • Sista R, Hua Z et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091–2104

    Article  Google Scholar 

  • Smetana W, Balluch B et al (2010) A ceramic microfluidic device for monitoring complex biochemical reactive systems. In: Fred A, Filipe J, Gamboa H (eds) Biomedical engineering systems and technologies, vol 52. Springer, Berlin, pp 110–123

  • Smetana W, Balluch B et al (2007) A multi-sensor biological monitoring module built up in LTCC-technology. Microelectron Eng 84(5–8):1240–1243

    Article  Google Scholar 

  • Smetana W, Balluch B et al (2009) Processing procedures for the realization of fine structured channel arrays and bridging elements by LTCC-technology. Microelectron Reliab 49(6):592–599

    Article  Google Scholar 

  • Sobocinski M, Juuti J et al (2009) Piezoelectric unimorph valve assembled on an LTCC substrate. Sens Actuators A Phys 149:315–319

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Thomas Maeder BJ, Fabrizio V, Caroline J, Peter R, Paul M (2012) Lamination of LTCC at low pressure and moderate temperature using screen-printed adhesives. In: IMAPS/ACerS 8th international CICMT conference and exhibition, Erfurt, Germany

  • Ulrike Deisinger TF, Andreas Roosen (2012). Realisation of large cavities in multilayer ceramics by cold low pressure lamination and their characterization by μCT. In: IMAPS/ACerS 8th International CICMT Conference and Exhibition, Erfurt, Germany

  • Vasudev A, Jagtiani A et al (2009) A low-voltage droplet microgripper for micro-object manipulation. J Micromech Microeng 19(7):075005

    Article  Google Scholar 

  • Voß T, Gründler P et al (1999) Temperature pulse voltammetry: hot layer electrodes made by LTCC technology. Electrochem Commun 1(9):383–388

    Article  Google Scholar 

  • Wang Y, Zhang G et al (2002) Research of LTCC/Cu, Ag multilayer substrate in microelectronic packaging. Mater Sci Eng B 94(1):48–53

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Yang J, Liu Y et al (2002) High sensitivity PCR assay in plastic micro reactors. Lab Chip 2(4):179–187

    Article  Google Scholar 

  • Zappe H, Shaik W (2005) Tunable microfluidic microlenses. Appl Opt 44(16):3238–3245

    Google Scholar 

  • Zaytseva NV, Goral VN et al (2005) Development of a microfluidic biosensor module for pathogen detection. Lab Chip 5(8):805–811

    Article  Google Scholar 

  • Zhang W, Eitel RE (2012) Biostability of low-temperature co-fired ceramic materials for microfluidic and biomedical devices. Int J Appl Ceram Technol 9(1):60–66

    Article  Google Scholar 

  • Zhang C, Xu J et al (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3):243–284

    Article  Google Scholar 

  • Zhe J, Jagtiani A et al (2007) A micromachined high throughput Coulter counter for bioparticle detection and counting. J Micromech Microeng 17(2):304–313

    Article  Google Scholar 

  • Zheng F, Jones WK et al (2007) Nanoceramic processing for high-power multi-channel electron multiplier in low temperature cofire ceramic (LTCC). J Microelectron Electron Packag 4(3):93–98

    Google Scholar 

Download references

Acknowledgments

This work was partially supported through the National Institute of Health (Award: IR43MH085474-01). The authors are also thankful for the support from Advanced Materials and Engineering Research Institute (AMERI) at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Vasudev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudev, A., Kaushik, A., Jones, K. et al. Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid Nanofluid 14, 683–702 (2013). https://doi.org/10.1007/s10404-012-1087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1087-3

Keywords