Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Anomaly detection methods based on GAN: a survey

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Anomaly detection (AD) is an enduring topic, and it has been used in various fields, such as fraud detection, industrial fault diagnosis, and medical image diagnosis. With the continuous development of deep learning, in recent years, an increasing number of researchers have begun to use GAN-based methods to solve AD problems. In this article, we first classify these GAN-based anomaly detection (GBAD) methods according to the different forms of data. Afterward, we explain the advantages and limitations of each method in each category. Then, for each category, we quantitatively give the effects of these methods. Finally, we discuss the current open issues and possible research directions when using the GBAD method to solve anomaly detection problems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Huo W, Wang W, Li W (2019) AnomalyDetect: An online distance-based anomaly detection algorithm. In: Miller J, Stroulia E, Lee K, Zhang L-J (eds) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer International Publishing, Cham, pp 63–79. https://doi.org/10.1007/978-3-030-23499-7_5

  2. Alghushairy O, Alsini R, Soule T, Ma X (2020) A review of local outlier factor algorithms for outlier detection in big data streams. Big Data Cogn Comput 5(1):1. https://doi.org/10.3390/bdcc5010001

    Article  Google Scholar 

  3. Henriques J, Caldeira F, Cruz T, Simões P. (2020) Combining k-means and xgboost models for anomaly detection using log datasets. Electronics 9(7):1164. https://doi.org/10.3390/electronics9071164

    Article  Google Scholar 

  4. Patil R, Biradar R, Ravi V, Biradar P, Ghosh U (2022) Network traffic anomaly detection using PCA and biGAN. Internet Technol Lett 5(1):e235. https://doi.org/10.1002/itl2.235

    Article  Google Scholar 

  5. Wang Z, Fu Y, Song C, Zeng P, Qiao L (2019) Power system anomaly detection based on OCSVM optimized by improved particle swarm optimization. IEEE Access 7:181580–181588. https://doi.org/10.1109/access.2019.2959699

    Article  Google Scholar 

  6. Pang G, Shen C, Cao L, Den Hengel A Van (2021) Deep learning for anomaly detection: a review. ACM Comput Surv 54(2):1–38. https://doi.org/10.1145/3439950

    Article  Google Scholar 

  7. Aytekin C, Ni X, Cricri F, Aksu E (2018) Clustering and Unsupervised Anomaly Detection with l2 Normalized Deep Auto-Encoder Representations. https://doi.org/10.1109/ijcnn.2018.8489068

  8. Chen Z, Yeo CK, Lee BS, Lau CT (2018) Autoencoder-based network anomaly detection. IEEE 2018 Wireless Telecommunications Symposium (WTS) pp 1–5. https://doi.org/10.1109/WTS.2018.8363930

  9. Zhang Z, Deng X (2021) Anomaly detection using improved deep SVDD model with data structure preservation. Pattern Recognit Lett 148:1–6. https://doi.org/10.1016/j.patrec.2021.04.020

    Article  Google Scholar 

  10. Zhou Y, Liang X, Zhang W, Zhang L, Song X (2021) Vae-based deep svdd for anomaly detection. Neurocomputing 453:131–140. https://doi.org/10.1016/j.neucom.2021.04.089

    Article  Google Scholar 

  11. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Neural Information Processing Systems. pp 2672–2680. https://doi.org/10.3156/jsoft.29.5_177_2

  12. Škvára V, Pevnỳ T, Šmídl V (2018) Are generative deep models for novelty detection truly better? pp 1–7. https://doi.org/10.48550/arXiv.1807.05027

  13. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017) Improved training of wasserstein gans. Advances in neural information processing systems, pp 30

  14. Thanh-Tung H, Venkatesh S, Tran T (2019) Improving generalization and stability of generative adversarial networks. 7th Int Conf Learn Represent ICLR 2019.

  15. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein GANs. Adv. Neural Inf. Process. Syst. 2017-December:5768–5778

  16. Xuan X A, Xp A, Nan L A, Xing H A, Lin M A, Xz A, Ning DAB (2022) GAN-based Anomaly Detection: A Review. https://doi.org/10.1016/j.neucom.2021.12.093

  17. Silva E, Lochter J (2020) A study on Anomaly Detection GAN-based methods on image data. In: Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional. SBC. pp 823–831. https://doi.org/10.5753/eniac.2019.9337

  18. Beula Rani B J, Sumathi L M E (2020) Survey on applying GAN for anomaly detection. In: 2020 International conference on computer communication and informatics, ICCCI 2020. https://doi.org/10.1109/ICCCI48352.2020.9104046, pp 1–5

  19. Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Lecture Notes in Computer Science . pp 146–147. https://doi.org/10.1007/978-3-319-59050-9_12

  20. Zenati H, Foo CS, Lecouat B, Manek G, Chandrasekhar VR (2018) Efficient GAN-based anomaly detection. https://doi.org/10.48550/arXiv.1902.03984

  21. Akcay S, Atapour-Abarghouei A, Breckon TP (2019) GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 622–637. https://doi.org/10.1007/978-3-030-20893-6_39

  22. Deecke L, Vandermeulen R, Ruff L, Mandt S, Kloft M (2019) Image anomaly detection with generative adversarial networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 3–17. https://doi.org/10.1007/978-3-030-10925-7_1

  23. Schlegl T, Seeböck P, Waldstein SM, Langs G, Schmidt-Erfurth U (2019) f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal 54:30–44. https://doi.org/10.1016/j.media.2019.01.010

    Article  Google Scholar 

  24. Perera P, Nallapati R, Xiang B (2019) OCGAN: One-class novelty detection using gans with constrained latent representations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp 2893–2901. https://doi.org/10.1109/cvpr.2019.00301

  25. Tuluptceva N, Bakker B, Fedulova I, Konushin A (2020) Perceptual Image Anomaly Detection. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 12046 LNCS:164–178. https://doi.org/10.1007/978-3-030-41404-7_12

  26. Liu S, Xu L (2020) An integrated model based on O-GAN and density estimation for anomaly detection. IEEE Access 8:204471–204482. https://doi.org/10.1109/ACCESS.2020.3037322

    Article  Google Scholar 

  27. ZSu J (2019) O-GAN: extremely concise approach for auto-encoding generative adversarial networks. https://doi.org/10.48550/arXiv.1903.01931https://doi.org/10.48550/arXiv.1903.01931

  28. Chatillon P, Ballester C (2021) History-Based Anomaly Detector: An Adversarial Approach to Anomaly Detection. In: Advances in Intelligent Systems and Computing. pp 761–776. https://doi.org/10.1007/978-3-030-55180-3_58

  29. Han C, Rundo L, Murao K, Milacski ZÁ, Umemoto K, Sala E, Nakayama H, Satoh S (2020) GAN-based multiple adjacent brain MRI slice reconstruction for unsupervised alzheimer’s disease diagnosis. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 44–54. https://doi.org/10.1007/978-3-030-63061-4_5

  30. Simarro Viana J, de la Rosa E, Vande Vyvere T, Robben D, Sima DM, Investigators CTP (2021) Unsupervised 3D Brain Anomaly Detection. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 12658 LNCS:133142. https://doi.org/10.1007/978-3-030-72084-1_13

  31. Shen H, Chen J, Wang R, Zhang J (2020) Counterfeit Anomaly Using Generative Adversarial Network for Anomaly Detection. IEEE Access 8:133051–133062. https://doi.org/10.1109/ACCESS.2020.3010612

    Article  Google Scholar 

  32. Zenati H, Romain M, Foo CS, Lecouat B, Chandrasekhar V (2018) Adversarially Learned Anomaly Detection. In: Proceedings - IEEE International Conference on Data Mining, ICDM. pp 727–736. https://doi.org/10.1109/ICDM.2018.00088

  33. Berg A, Felsberg M, Ahlberg J (2020) Unsupervised adversarial learning of anomaly detection in the wild. In: Frontiers in Artificial Intelligence and Applications. pp 1002–1008. https://doi.org/10.3233/FAIA200194

  34. Zhou K, Gao S, Cheng J, Gu Z, Fu H, Tu Z, Yang J, Zhao Y, Liu J (2020) Sparse-Gan: Sparsity-Constrained Generative Adversarial Network for Anomaly Detection in Retinal OCT Image. In: Proceedings - International Symposium on Biomedical Imaging. pp 1227–1231. https://doi.org/10.1109/ISBI45749.2020.9098374

  35. Carrara F, Amato G, Brombin L, Falchi F, Gennaro C (2020) Combining GANs and AutoEncoders for efficient anomaly detection. In: Proceedings - International Conference on Pattern Recognition. pp 3939–3946. https://doi.org/10.1109/ICPR48806.2021.9412253

  36. Nakao T, Hanaoka S, Nomura Y, Murata M, Takenaga T, Miki S, Watadani T, Yoshikawa T, Hayashi N, Abe O (2021) Unsupervised deep anomaly detection in chest radiographs. J Digit Imaging 34(2):418–427. https://doi.org/10.1007/s10278-020-00413-2

    Article  Google Scholar 

  37. Zhong J, Xie W, Li Y, Lei J, Du Q (2021) Characterization of Background-Anomaly separability with generative adversarial network for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 59(7):6017–6028. https://doi.org/10.1109/TGRS.2020.3013022https://doi.org/10.1109/TGRS.2020.3013022

    Article  Google Scholar 

  38. Akcay S, Atapour-Abarghouei A, Breckon TP (2019) Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection. https://doi.org/10.1109/IJCNN.2019.8851808

  39. Huang C H, Lee P H, Chang S H, Kuo H C, Sun C W, Lin C C, Tsai C L, Liu X (2021) Automated optical inspection method for light-emitting diode defect detection using unsupervised generative adversarial neural network. Crystals 11(9):1048. https://doi.org/10.3390/cryst11091048

    Article  Google Scholar 

  40. Li Z, Zhao G, Yin A, Wang T, Chen H, Guo L, Yang H, Yang J, Lin C, Zhao G, Yin A (2020) CS-GANOmaly: A Supervised Anomaly Detection Approach with Ancillary Classifier GANs for Chromosome Images. In: Proceedings of 2020 IEEE 3rd International Conference of Safe Production and Informatization, IICSPI 2020. pp 492–499. https://doi.org/10.1109/IICSPI51290.2020.9332331

  41. Wan Z, Ma J, Qin N, Zhou Z, Huang D (2021) Fault Detection of Air-spring Devices Based on GANomaly and Isolated Forest Algorithms. In: Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications, ICIEA 2021. pp 1328-1333. https://doi.org/10.1109/ICIEA51954.2021.9516228

  42. Baur C, Graf R, Wiestler B, Albarqouni S, Navab N (2020) SteGANomaly: Inhibiting CycleGAN Steganography for Unsupervised Anomaly Detection in Brain MRI. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 718–727. https://doi.org/10.1007/978-3-030-59713-9_69

  43. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp 2242–2251. https://doi.org/10.1109/ICCV.2017.244https://doi.org/10.1109/ICCV.2017.244

  44. Lee C K, Cheon Y J, Hwang W Y (2021) Studies on the GAN-based Anomaly Detection Methods for the Time Series Data. IEEE Access 9:73201–73215. https://doi.org/10.1109/ACCESS.2021.3078553

    Article  Google Scholar 

  45. Bashar M A, Nayak R (2020) TANoGAN: Time Series Anomaly Detection with Generative Adversarial Networks. In: 2020 IEEE Symposium series on computational intelligence, SSCI 2020. pp 1778–1785. https://doi.org/10.1109/SSCI47803.2020.9308512

  46. Li Y, Peng X, Zhang J, Li Z, Wen M (2021) DCT-GAN: Dilated Convolutional Transformer-based GAN For Time Series Anomaly Detection. https://doi.org/10.1109/TKDE.2021.3130234

  47. Li D, Chen D, Jin B, Shi L, Goh J, Ng SK (2019) MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 703–716. https://doi.org/10.1007/978-3-030-30490-4_56

  48. Mao S, Guo J, Gu T, Ma Z (2020) Dis-AE-LSTM: Generative Adversarial Networks for Anomaly Detection of Time Series Data. In: Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020. pp 330-336. https://doi.org/10.1109/ICAICE51518.2020.00070

  49. Li D, Chen D, Goh J, Ng SK (2018) Anomaly detection with generative adversarial networks for multivariate time series. https://doi.org/10.48550/arXiv.1809.04758

  50. González G G, Casas P, Fernández A, Gomez G (2020) Net-GAN: Recurrent generative adversarial networks for network anomaly detection in multivariate time-series. Netw Traffic Meas Anal Conf

  51. Geiger A, Liu D, Alnegheimish S, Cuesta-Infante A, Veeramachaneni K (2020) TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks. In: Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020. pp 33–43. https://doi.org/10.1109/bigdata50022.2020.9378139

  52. Maru C, Kobayashi I (2020) Collective Anomaly Detection for Multivariate Data using Generative Adversarial Networks. In: 2020 International Conference on Computational Science and Computational Intelligence (CSCI). https://doi.org/10.1109/CSCI51800.2020.00106, pp 598–604

  53. Zhou B, Liu S, Hooi B, Cheng X, Ye J (2019) Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI International Joint Conference on Artificial Intelligence. pp 4433–4439. https://doi.org/10.24963/ijcai.2019/616

  54. Choi Y, Lim H, Choi H, Kim IJ (2020) GAN-based anomaly detection and localization of multivariate time series data for power plant. In: Proceedings - 2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020. pp 71–74. https://doi.org/10.1109/BigComp48618.2020.00-97

  55. Xu X, Zhao H, Liu H, Sun H (2020) LSTM-Gan-xgboost based anomaly detection algorithm for time series data. In: Proceedings - 11th International Conference on Prognostics and System Health Management, PHM-Jinan 2020. pp 334-339. https://doi.org/10.1109/PHM-Jinan48558.2020.00066

  56. ZChen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 785–794 . https://doi.org/10.1145/2939672.2939785

  57. Zhu S, Yuchi H S, Xie Y (2020) Adversarial anomaly detection for marked Spatio-Temporal streaming data. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. pp 8921–8925. https://doi.org/10.1109/ICASSP40776.2020.9053837

  58. Patil R, Biradar R, Ravi V, Biradar P, Ghosh U (2020) Network traffic anomaly detection using PCA and biGAN. https://doi.org/10.1002/itl2.235

  59. Lim SK, Loo Y, Tran NT, Cheung NM, Roig G, Elovici Y (2018) DOPING: Generative Data Augmentation for Unsupervised Anomaly Detection with GAN. In: Proceedings - IEEE International Conference on Data Mining, ICDM. pp 1122–1127. https://doi.org/10.1109/icdm.2018.00146

  60. Ngo PC, Winarto AA, Kou CKL, Park S, Akram F, Lee HK (2019) Fence GAN: Towards better anomaly detection. In: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI. pp 141–148. https://doi.org/10.1109/ICTAI.2019.00028https://doi.org/10.1109/ICTAI.2019.00028

  61. Wang C, Dai Y, Dai W (2019) Deep embedding GAN-based model for anomaly detection on high-dimensional sparse data. In: Chinese Control Conference, CCC. pp 8718–8722. https://doi.org/10.23919/chicc.2019.8866256

  62. Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2020) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng 32(8):1517–1528. https://doi.org/10.1109/TKDE.2019.2905606

    Google Scholar 

  63. Hanczar B, Janodet J C, Klaudel W (2019) An encoding adversarial network for anomaly detection. Proc Mach Learn Res 101(1):188–203

    Google Scholar 

  64. Kim Y, Choi S (2019) Forward-Backward Generative adversarial networks for anomaly detection. Proc Elev Asian Conf Mach Learn 101(2018):1142–1155

    Google Scholar 

  65. Li Z, Sun C, Liu C, Chen X, Wang M, Liu Y (2020) RCC-Dual-GAN: An Efficient Approach for Outlier Detection with Few Identified Anomalies. Arxiv. https://doi.org/10.48550/arXiv.2003.03609https://doi.org/10.48550/arXiv.2003.03609

  66. Han X, Chen X, Liu LP (2020) GAN ensemble for anomaly detection. https://doi.org/10.48550/arXiv.2012.07988

  67. Shimauchi H (2021) Improving Supervised Outlier Detection by Unsupervised Representation Learning and Generative Adversarial Networks: An Extension of Extreme Gradient Boosting Outlier Detection by GANs. In: ACM International Conference Proceeding Series. pp 22–27. https://doi.org/10.1145/3459955.3460595https://doi.org/10.1145/3459955.3460595

  68. Chen Z, Duan J, Kang L, Qiu G (2021) Supervised anomaly detection via conditional generative adversarial network and ensemble active learning. https://doi.org/10.48550/arXiv.2104.11952

  69. Du J, Guo L, Song L, Liang H, Chen T (2020) Anomaly Detection of Aerospace Facilities Using Ganomaly. In: PervasiveHealth: Pervasive Computing Technologies for Healthcare. pp 40–44. https://doi.org/10.1145/3404716.3404730

  70. Luo Z, Zuo R, Xiong Y, Wang X (2021) Detection of geochemical anomalies related to mineralization using the GANomaly network. Appl Geochemistry 131:105043. https://doi.org/10.1016/j.apgeochem.2021.105043

    Article  Google Scholar 

  71. Yan K (2021) Chiller fault detection and diagnosis with anomaly detective generative adversarial network. Build Environ 201:107982. https://doi.org/10.1016/j.buildenv.2021.107982

    Article  Google Scholar 

  72. Xu R, Yan W (2020) A Comparison of GANs-Based Approaches for Combustor System Fault Detection. In: Proceedings of the International Joint Conference on Neural Networks. pp 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207487

  73. Zheng P, Yuan S, Wu X, Li J, Lu A (2019) One-class adversarial nets for fraud detection. In: 33Rd AAAI conference on artificial intelligence, AAAI 2019, 31st innovative applications of artificial intelligence conference, IAAI 2019 and the 9th AAAI symposium on educational advances in artificial intelligence, EAAI 2019. pp 1286–1293. https://doi.org/10.1609/aaai.v33i01.33011286

  74. Tilon S M, Nex F, Duarte D, Kerle N, Vosselman G (2020) Infrastructure degradation and Post-Disaster damage detection using anomaly detecting generative adversarial networks. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 5(2):573–582. https://doi.org/10.5194/isprs-annals-V-2-2020-573-2020

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Special Project of Foshan Science and Technology Innovation Team (No. FS0AA-KJ919-4402-0069). Yifan Li is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Y. Anomaly detection methods based on GAN: a survey. Appl Intell 53, 8209–8231 (2023). https://doi.org/10.1007/s10489-022-03905-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03905-6

Keywords