Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Species ranges are expected to move polewards following the changing climate, which poses novel challenges to the protected area network, particularly at northern latitudes. Here we study how well protected areas are likely to sustain populations of birds of conservation concern under a changing climate in northern Europe, in Finland. We fitted bioclimatic envelope models generated for 100 bird species to climate scenario data for the years 2051–2080 and three alternative emission scenarios in a 10-km grid system to predict changes in the species probability of occurrence. We related the projected changes in the climatic suitability to the amount of protected preferred habitat for the study species in the 10-km grid cells, and based on the cover of four main CORINE Land Cover classes in each conservation area in Finland. The probability of occurrence of all species (except marshland birds) decreased according to all scenarios, the decline being greatest in southern and smallest in northern boreal zones. This decline was slightly greater in unprotected than in protected areas for species of forests, mires and mountain habitats. The climatically suitable areas for the species were predicted to shift northwards, but the potential gain of southern species of conservation concern appears not to compensate for the loss of northern species. Thus, a representative protected area network is needed in all boreal zones. Overall, our results show that species-specific habitat preferences and habitat availability should be taken into account when assessing the efficiency of a protected area network in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Alagador D, Martins MJ, Cerdeira JO, Cabeza M, Araújo MB (2011) A probability-based approach to match species with reserves when data are at different resolutions. Biol Conserv 144:811–820. doi:10.1016/j.biocon.2010.11.011

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi:10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Araújo MB (2004) Matching species with reserves—uncertainties from using data at different resolutions. Biol Conserv 118:533–538. doi:10.1016/j.biocon.2003.10.006

    Article  Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Chang Biol 10:1618–1626. doi:10.1111/j.1365-2486.2004.00828.x

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogues-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi:10.1111/j.1461-0248.2011.01610.x

    Article  PubMed  Google Scholar 

  • Austin MP, Belbin L, Meyers JA, Doherty MD, Luoto M (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Model 199:197–216. doi:10.1016/j.ecolmodel.2006.05.023

    Article  Google Scholar 

  • Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Chang Biol 18:881–890. doi:10.1111/j.1365-2486.2011.02552.x

    Article  Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Glob Chang Biol 8:954–971. doi:10.1046/j.1365-2486.2002.00490.x

    Article  Google Scholar 

  • BirdLife International (2004a) Birds in Europe: population estimates, trends and conservation status. BirdLife International, Cambridge

    Google Scholar 

  • BirdLife International (2004b) Birds in the European Union: a status assessment. BirdLife International, Wageningen (http://www.birdlife.org/action/science/species/birds_in_europe/birds_in%20_the_eu.pdf). Accessed 25 July 2012

  • Brommer JE, Lehikoinen A, Valkama J (2012) The breeding ranges of Central European and Arctic bird species move poleward. PLoS ONE 7(9):e43648. doi:10.1371/journal.pone.0043648

    Article  PubMed  CAS  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

    Article  PubMed  CAS  Google Scholar 

  • Coetzee BWT, Robertson MP, Erasmus BFN, van Rensburg BJ, Thuiller W (2009) Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob Ecol Biogeogr 18:701–710. doi:10.1111/j.1466-8238.2009.00485.x

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. doi:10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  • Denoel M, Ficetola GF (2008) Conservation of newt guilds in an agricultural landscape of Belgium: the importance of aquatic and terrestrial habitats. Aquat Conserv-Mar Freshw Ecosyst 18:714–728. doi:10.1002/aqc.853

    Article  Google Scholar 

  • Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc R Soc B-Biol Sci 276:1449–1457. doi:10.1098/rspb.2008.1801

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  PubMed  CAS  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/S0376892997000088

    Article  Google Scholar 

  • Forsman JT, Mönkkönen M (2003) The role of climate in limiting European resident bird populations. J Biogeogr 30:55–70. doi:10.1046/j.1365-2699.2003.00812.x

    Article  Google Scholar 

  • Garcia RA, Burgess ND, Cabeza M, Rahbek C, Araújo MB (2012) Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob Chang Biol 18:1253–1269. doi:10.1111/j.1365-2486.2011.02605.x

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Hagemeijer WJM, Blair MJ (eds) (1997) The EBCC atlas of European breeding birds: their distribution and abundance. T & A D Poyser, London

    Google Scholar 

  • Hannah L, Salm R (2005) Protected area management in a changing climate. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 363–371

    Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138. doi:10.1890/1540-9295(2007)5

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Heath MF, Evans MI (eds) (2000) Important bird areas in Europe: priority sites for conservation. 2 vols. BirdLife International (BirdLife Conservation Series No. 8), Cambridge

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006a) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777. doi:10.1177/0309133306071957

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Virkkala R (2006b) Does seasonal fine-tuning of climatic variables improve the performance of bioclimatic envelope models for migratory birds? Divers Distrib 12:502–510. doi:10.1111/j.1366-9516.2006.00284.x

    Article  Google Scholar 

  • Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35:276–288. doi:10.1111/j.1600-0587.2011.06999.x

    Article  Google Scholar 

  • Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kuhn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63. doi:10.1111/j.1466-8238.2010.00613.x

    Article  Google Scholar 

  • Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539. doi:10.1111/j.1523-1739.2006.00609.x

    Article  PubMed  Google Scholar 

  • Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B (2009) Projected impacts of climate change on a continent-wide protected area network. Ecol Lett 12:420–431. doi:10.1111/j.1461-0248.2009.01297.x

    Article  PubMed  Google Scholar 

  • Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durham University, The RSPB and Lynx Edicions, Barcelona

    Google Scholar 

  • Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climate change on European breeding birds. PLoS ONE 3(1):e1439. doi:10.1371/journal.pone.0001439

    Article  PubMed  Google Scholar 

  • IPCC (2007) Climate Change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri, R.K., Reisinger, A., (eds.)]. IPCC, Geneva, p 104

    Google Scholar 

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219. doi:10.1371/journal.pbio.0050157

    Article  CAS  Google Scholar 

  • Jylhä K, Tuomenvirta H, Ruosteenoja K (2004) Climate change projections for Finland during the 21st century. Boreal Environ Res 9:127–152

    Google Scholar 

  • Kujala H, Araújo MB, Thuiller W, Cabeza M (2011) Misleading results from conventional gap analysis—messages from the warming north. Biol Conserv 144:2450–2458. doi:10.1016/j.biocon.2011.06.023

    Article  Google Scholar 

  • Landis J, Koch G (1977) The measurement of observer agreement for categorial data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  • Lehmann A, Overton JM, Leathwick JR (2003) GRASP: generalized regression analysis and spatial prediction (vol 157, pg 189, 2002). Ecol Model 160:165–183. doi:10.1016/S0304-3800(02)00354-X

    Article  Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. doi:10.1038/nature08649

    Article  PubMed  CAS  Google Scholar 

  • Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model 220:3512–3520. doi:10.1016/j.ecolmodel.2008.10.019

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, New York

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/bams-88-9-1383

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Moen J, Aune K, Edenius L, Angerbjörn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9(1):16

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25. doi:10.3354/cr021001

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245. doi:10.1016/S0304-3800(00)00322-7

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi:10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298. doi:10.1111/j.0906-7590.2004.03740.x

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi:10.1126/science.1196624

    Article  PubMed  CAS  Google Scholar 

  • Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Chang Biol 9:647–655. doi:10.1046/j.1365-2486.2003.00616.x

    Article  Google Scholar 

  • Rassi P, Alanen A, Kanerva T, Mannerkoski I (eds) (2001) The 2000 red list of Finnish species (In Finnish with an English summary). Ympäristöministeriö & Suomen ympäristökeskus, Helsinki

    Google Scholar 

  • Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (eds) (2010) The 2010 red list of Finnish species. Ympäristöministeriö & Suomen ympäristökeskus, Helsinki

    Google Scholar 

  • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Şekercioğlu Ç, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18. doi:10.1016/j.biocon.2011.10.019

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi:10.1126/science.3287615

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362. doi:10.1046/j.1365-2486.2003.00666.x

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027. doi:10.1111/j.1365-2486.2004.00859.x

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005a) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. doi:10.1073/pnas.0409902102

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB (2005b) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357. doi:10.1111/j.1466-822x.2005.00162.x

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler B, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373. doi:10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc London B-Biol Sci 270:467–473. doi:10.1098/rspb.2002.2246

    Article  CAS  Google Scholar 

  • Triviño M, Thuiller W, Cabeza M, Hickler T (2011) The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds. PLoS ONE 6(12):e29373. doi:10.1371/journal.pone0029373

    Article  PubMed  Google Scholar 

  • Väisänen RA, Lammi E, Koskimies P (1998) Distribution, numbers and population changes of Finnish breeding birds (In Finnish with an English summary). Otava, Helsinki

    Google Scholar 

  • Valkama J, Vepsäläinen V, Lehikoinen A (2011) The third Finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment, Helsinki (http://atlas3.lintuatlas.fi/english). Accessed 1 Aug 2012

  • Virkkala R, Rajasärkkä A (2007) Uneven regional distribution of protected areas in Finland: consequences for boreal forest bird populations. Biol Conserv 134:361–371. doi:10.1016/j.biocon.2006.08.006

    Article  Google Scholar 

  • Virkkala R, Rajasärkkä A (2011) Northward density shift of bird species in boreal protected areas due to climate change. Boreal Environ Res 16 (suppl. B):2–13

    Google Scholar 

  • Virkkala R, Toivonen H (1999) Maintaining biological diversity in Finnish forests. Finnish Environ 278:1–50

    Google Scholar 

  • Virkkala R, Rajasärkkä A, Väisänen RA, Vickholm M, Virolainen E (1994) The significance of protected areas for the land birds of southern Finland. Conserv Biol 8:532–544. doi:10.1046/j.1523-1739.1994.08020532.x

    Article  Google Scholar 

  • Virkkala R, Korhonen KT, Haapanen R, Aapala K (2000) Protected forests and mires in forest and mire vegetation zones in Finland based on the 8th National Forest Inventory (In Finnish with an English summary). Finnish Environ 395:1–49

    Google Scholar 

  • Virkkala R, Luoto M, Heikkinen RK, Leikola N (2005) Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. J Biogeogr 32:1957–1970. doi:10.1111/j.1365-2699.2005.01326.x

    Article  Google Scholar 

  • Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353. doi:10.1016/j.biocon.2008.03.007

    Article  Google Scholar 

  • Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol 36:269–281. doi:10.1016/j.actao.2010.01.006

    Article  Google Scholar 

  • Zuckerberg B, Woods AM, Porter WF (2009) Poleward shifts in breeding bird distributions in New York State. Glob Chang Biol 15:1866–1883. doi:10.1111/j.1365-2486.2009.01878.x

    Article  Google Scholar 

Download references

Acknowledgments

Richard D. Gregory and the British Trust for Ornithology are greatly acknowledged for providing us with the European Bird Atlas data. The work was part of the A-LA-CARTE project led by Tim Carter in the Research Programme on Climate Change (FICCA) of the Academy of Finland. The comments of two anonymous reviewers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimo Virkkala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virkkala, R., Heikkinen, R.K., Fronzek, S. et al. Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?. Biodivers Conserv 22, 459–482 (2013). https://doi.org/10.1007/s10531-012-0423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0423-y

Keywords