Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose aerogel based on cationic cellulose nanofibrils (Q-CNF) with surface rich in trimethylammonium chloride functional groups was prepared by freeze drying and chemical crosslinking with an aliphatic triisocyanate. The aerogel, in the form of a rigid porous material, was shown to be an efficient adsorbent for anionic dyes and exhibited strong resistance to disintegration in water. The adsorption capacity for red, blue, and orange dyes was 250, 520, and 600 µmol g−1 (about 160, 230, and 560 mg g−1), respectively. Zeta potential measurements confirmed the main contribution of electrostatic interactions between positive sites on the CNF surface and dye sulfonate groups. The adsorption capacity was shown to be related to the specific surface area of the nanocellulose aerogel and the cationic content of the CNF. Spent Q-CNF adsorbent could be regenerated by extraction with KCl solution in ethanol–water mixture and reused for multiple adsorption–desorption cycles without significant loss of adsorption capacity. Such Q-CNF aerogels show great promise for application as reusable adsorbents from a renewable resource for treatment of dye-loaded water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdul Khalil HPS, Davoudpour Y, Islama MdN, Mustapha A, Sudeshd K, Dungania R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  • Alcalá M, González I, Boufi S, Vilaseca F, Mutjé P (2013) All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose 20:2909–2921

    Article  Google Scholar 

  • Bjelopavlic M, Newcombe G, Hayes R (1999) Adsorption of NOM onto activated carbon: effect of surface charge, ionic strength, and pore volume distribution. J Colloid Interface Sci 210:271–282

    Article  CAS  Google Scholar 

  • Boufi S (2014) Chapter 14. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy. Springer, Berlin, pp 267–305

    Google Scholar 

  • Boufi S, Kaddami H, Dufresne A (2014) Mechanical performance and transparency of nanocellulose reinforced polymer nanocomposites. Macromol. Mater. Eng. 299:560–568

    Article  CAS  Google Scholar 

  • Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232

    Article  CAS  Google Scholar 

  • Denyer SP (1995) Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegradation 36:227–245

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–226

    Article  CAS  Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale. 6:7764–7773

    Article  CAS  Google Scholar 

  • Faust S, Aly O (1987) Adsorption processes for water treatment. Butterworth, Oxford

    Google Scholar 

  • García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  Google Scholar 

  • González I, Boufi S, Pèlach MA, Alcalá M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources. 4:5167–5180

    Google Scholar 

  • González I, Vilaseca F, Alcalà M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and CNF on the physico-mechanical properties of paper. Cellulose 20:1425–1435

    Article  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Ind Eng Chem Fundam 5:212

    Article  CAS  Google Scholar 

  • Ho TTT, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31

    Article  CAS  Google Scholar 

  • Kim CH, Youn HJ, Lee HL (2015) Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 22:3715–3724

    Article  CAS  Google Scholar 

  • Maatar W, Boufi S (2015) Poly (methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298

    Article  CAS  Google Scholar 

  • Olszewska A, Eronen P, Johansson LS, Malho JM, Ankerfors M, Lindstrom T, Ruokolainen J, Laine J, Osterberg M (2011) The behaviour of cationic NanoFibrillar Cellulose in aqueous media. Cellulose 18:1213–1226

    Article  CAS  Google Scholar 

  • Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055

    Article  CAS  Google Scholar 

  • Ray MS (1996) Adsorption and adsorptive separations. Adsorption 2:157–178

    Article  CAS  Google Scholar 

  • Richard M (1996) Principles of Adsorption and Reaction on Solid Surfaces. Wiley Interscience, New York

    Google Scholar 

  • Saini S, Falco CY, Belgacem MN, Bras J (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydrate Polym. 135:239–247

    Article  CAS  Google Scholar 

  • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13:1340–1349

    Article  CAS  Google Scholar 

  • Yang X, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci 287:25–34

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Boufi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maatar, W., Boufi, S. Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes. Cellulose 24, 1001–1015 (2017). https://doi.org/10.1007/s10570-016-1162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1162-0

Keywords