Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Machine Learning for First-Order Theorem Proving

Learning to Select a Good Heuristic

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We applied two state-of-the-art machine learning techniques to the problem of selecting a good heuristic in a first-order theorem prover. Our aim was to demonstrate that sufficient information is available from simple feature measurements of a conjecture and axioms to determine a good choice of heuristic, and that the choice process can be automatically learned. Selecting from a set of 5 heuristics, the learned results are better than any single heuristic. The same results are also comparable to the prover’s own heuristic selection method, which has access to 82 heuristics including the 5 used by our method, and which required additional human expertise to guide its design. One version of our system is able to decline proof attempts. This achieves a significant reduction in total time required, while at the same time causing only a moderate reduction in the number of theorems proved. To our knowledge no earlier system has had this capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013).http://archive.ics.uci.edu/ml

  2. Baldi, P., Brunak, S., Chauvin, Y., Anderson, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag (2006)

  4. Bridge, J.P.: Machine Learning and Automated Theorem Proving. Tech. Rep. UCAM-CL-TR-792, University of Cambridge, Computer Laboratory (2010). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf

  5. Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21(16), 3385–3393 (2005)

    Article  Google Scholar 

  6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). doi:10.1145/368273.368557

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960). doi:10.1145/321033.321034

    Article  MathSciNet  MATH  Google Scholar 

  8. Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. In: Proceedings Fifteenth International Joint Conference on Artificial Intelligence (IJCAI) 1997, pp. 102–107. Morgan Kaufmann (1997)

  9. Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from Previous Proof Experience. Technical Report AR99-4, Institut für Informatik, Technische Universität München (1999)

  10. Denzinger, J., Kronenburg, M., Schulz, S.: Discount - a distributed and learning equational prover. J. Autom. Reason. 18, 189–198 (1997). doi:10.1023/A:1005879229581

    Article  Google Scholar 

  11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2000)

  12. Erkek, C.A.: Mixture of Experts Learning in Automated Theorem Proving. Master’s thesis, Bogazici University (2010)

  13. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  14. Fuchs, M.: Automatic selection of search-guiding heuristics for theorem proving. In: Proceedings of the 10th FLAIRS, pp. 1–5. Florida AI Research Society, Daytona Beach (1998)

  15. Fuchs, M., Fuchs, M.: Feature-based learning of search-guiding heuristics for theorem proving. AI Commun. 11(3–4), 175–189 (1998)

    Google Scholar 

  16. Goller, C.: Learning search-control heuristics for automated deduction systems with folding architecture networks. In: Proceedings European Symposium on Artificial Neural Networks. D-Facto publications (1999)

  17. Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press (2001)

  18. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  19. Haim, S., Walsh, T.: Online estimation of SAT solving runtime. In: Kleine Büning, H., Zhao, X. (eds.) Theory and Applications of Satisfiability Testing – SAT 2008, Lecture Notes in Computer Science, vol. 4996, pp. 133–138. Springer, Berlin (2008). doi:10.1007/978-3-540-79719-7_12

  20. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing - SAT 2009, Lecture Notes in Computer Science, vol. 5584, pp. 312–325. Springer, Berlin (2009). doi:10.1007/978-3-642-02777-2_30

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics, 2nd edn. Springer (2009)

  22. He, H.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  23. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification. Tech. rep., Department of Computer Science, National Taiwan University (2003)

  24. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems, 2nd edn. Cambridge University Press (2004)

  25. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge, MA (1999)

  26. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP 2011, Lecture Notes in Computer Science, vol. 6876, pp. 454–469. Springer, Berlin (2011). doi:10.1007/978-3-642-23786-7_35

  27. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), vol. 2, pp. 1137–1143. Morgan Kaufmann (1995)

  28. Lanckriet, G.R.G., Bie, T.D., Cristianini, N., Jordan, M.I., Noble, W.S.: A statistical framework for genomic data fusion. Bioinformatics 20(16), 2626–2635 (2004)

    Article  Google Scholar 

  29. Luenberger, D.G.: Linear and Nonlinear Programming. Kluwer (2003)

  30. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/

  31. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. 209, 415–446 (1909)

    Article  MATH  Google Scholar 

  32. Mitchell, T.: Machine Learning. McGraw Hill (1997)

  33. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach – a case study in intensive care monitoring. In: International Conference on Machine Learning (ICML), pp. 268–277. Bled, Slowenien (1999)

  34. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming – CP 2004, Lecture Notes in Computer Science, vol. 3258, pp. 438–452. Springer, Berlin (2004). doi:10.1007/978-3-540-30201-8_33

  35. Pilkington, N.C.V., Trotter, M.W.B., Holden, S.B.: Multiple kernel learning for drug discovery. Mol. Inform. 31(3–4), 313–322 (2012)

    Article  Google Scholar 

  36. Rasmussen, C.E., Williams, C.KI.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2006)

  37. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books (1962)

  38. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the 22nd National Conference on Artificial Intelligence - AAAI’07, vol. 1, pp. 255–260. AAAI Press (2007). http://dl.acm.org/citation.cfm?id=1619645.1619686

  39. Schulz, S.: Learning Search Control Knowledge for Equational Deduction. No. 230 in DISKI. Akademische Verlagsgesellschaft Aka GmbH Berlin (2000)

  40. Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2/3), 111–126 (2002)

    MATH  Google Scholar 

  41. Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

  42. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

  43. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  44. Ting, K.M.: An instance-weighted method to induce cost-sensitive trees. IEEE Trans. Knowl. Data Eng. 14(3), 659–665 (2002)

    Article  Google Scholar 

  45. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, no. 257 in CEUR Workshop Proceedings, pp. 45–58 (2007)

  46. Williams, C.KI., Barber, D.: Bayesian classification with Gaussian processes. IEEE Trans Pattern. Anal. Mach. Intell. 20(12), 1342–1351 (1998)

    Article  Google Scholar 

  47. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

    MATH  Google Scholar 

  48. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Features for SAT (2012). Available at www.cs.ubc.ca/labs/beta/Projects/SATzilla/

  49. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: Satzilla2012: improved algorithm slection based on cost-sensitive classification models. In: Balint, A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (eds.) Proceedings of SAT Challange 2012: Solver and Benchmark Descriptions, Department of Computer Science Series of Publications B, vol. B-2012-2, pp. 57–58. University of Helsinki (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean B. Holden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridge, J.P., Holden, S.B. & Paulson, L.C. Machine Learning for First-Order Theorem Proving. J Autom Reasoning 53, 141–172 (2014). https://doi.org/10.1007/s10817-014-9301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-014-9301-5

Keywords