Abstract
We applied two state-of-the-art machine learning techniques to the problem of selecting a good heuristic in a first-order theorem prover. Our aim was to demonstrate that sufficient information is available from simple feature measurements of a conjecture and axioms to determine a good choice of heuristic, and that the choice process can be automatically learned. Selecting from a set of 5 heuristics, the learned results are better than any single heuristic. The same results are also comparable to the prover’s own heuristic selection method, which has access to 82 heuristics including the 5 used by our method, and which required additional human expertise to guide its design. One version of our system is able to decline proof attempts. This achieves a significant reduction in total time required, while at the same time causing only a moderate reduction in the number of theorems proved. To our knowledge no earlier system has had this capability.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bache, K., Lichman, M.: UCI Machine Learning Repository (2013).http://archive.ics.uci.edu/ml
Baldi, P., Brunak, S., Chauvin, Y., Anderson, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag (2006)
Bridge, J.P.: Machine Learning and Automated Theorem Proving. Tech. Rep. UCAM-CL-TR-792, University of Cambridge, Computer Laboratory (2010). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf
Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21(16), 3385–3393 (2005)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). doi:10.1145/368273.368557
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960). doi:10.1145/321033.321034
Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. In: Proceedings Fifteenth International Joint Conference on Artificial Intelligence (IJCAI) 1997, pp. 102–107. Morgan Kaufmann (1997)
Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from Previous Proof Experience. Technical Report AR99-4, Institut für Informatik, Technische Universität München (1999)
Denzinger, J., Kronenburg, M., Schulz, S.: Discount - a distributed and learning equational prover. J. Autom. Reason. 18, 189–198 (1997). doi:10.1023/A:1005879229581
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2000)
Erkek, C.A.: Mixture of Experts Learning in Automated Theorem Proving. Master’s thesis, Bogazici University (2010)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)
Fuchs, M.: Automatic selection of search-guiding heuristics for theorem proving. In: Proceedings of the 10th FLAIRS, pp. 1–5. Florida AI Research Society, Daytona Beach (1998)
Fuchs, M., Fuchs, M.: Feature-based learning of search-guiding heuristics for theorem proving. AI Commun. 11(3–4), 175–189 (1998)
Goller, C.: Learning search-control heuristics for automated deduction systems with folding architecture networks. In: Proceedings European Symposium on Artificial Neural Networks. D-Facto publications (1999)
Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press (2001)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Haim, S., Walsh, T.: Online estimation of SAT solving runtime. In: Kleine Büning, H., Zhao, X. (eds.) Theory and Applications of Satisfiability Testing – SAT 2008, Lecture Notes in Computer Science, vol. 4996, pp. 133–138. Springer, Berlin (2008). doi:10.1007/978-3-540-79719-7_12
Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing - SAT 2009, Lecture Notes in Computer Science, vol. 5584, pp. 312–325. Springer, Berlin (2009). doi:10.1007/978-3-642-02777-2_30
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics, 2nd edn. Springer (2009)
He, H.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification. Tech. rep., Department of Computer Science, National Taiwan University (2003)
Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems, 2nd edn. Cambridge University Press (2004)
Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge, MA (1999)
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP 2011, Lecture Notes in Computer Science, vol. 6876, pp. 454–469. Springer, Berlin (2011). doi:10.1007/978-3-642-23786-7_35
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), vol. 2, pp. 1137–1143. Morgan Kaufmann (1995)
Lanckriet, G.R.G., Bie, T.D., Cristianini, N., Jordan, M.I., Noble, W.S.: A statistical framework for genomic data fusion. Bioinformatics 20(16), 2626–2635 (2004)
Luenberger, D.G.: Linear and Nonlinear Programming. Kluwer (2003)
McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/
Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. 209, 415–446 (1909)
Mitchell, T.: Machine Learning. McGraw Hill (1997)
Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach – a case study in intensive care monitoring. In: International Conference on Machine Learning (ICML), pp. 268–277. Bled, Slowenien (1999)
Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming – CP 2004, Lecture Notes in Computer Science, vol. 3258, pp. 438–452. Springer, Berlin (2004). doi:10.1007/978-3-540-30201-8_33
Pilkington, N.C.V., Trotter, M.W.B., Holden, S.B.: Multiple kernel learning for drug discovery. Mol. Inform. 31(3–4), 313–322 (2012)
Rasmussen, C.E., Williams, C.KI.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2006)
Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books (1962)
Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the 22nd National Conference on Artificial Intelligence - AAAI’07, vol. 1, pp. 255–260. AAAI Press (2007). http://dl.acm.org/citation.cfm?id=1619645.1619686
Schulz, S.: Learning Search Control Knowledge for Equational Deduction. No. 230 in DISKI. Akademische Verlagsgesellschaft Aka GmbH Berlin (2000)
Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2/3), 111–126 (2002)
Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)
Ting, K.M.: An instance-weighted method to induce cost-sensitive trees. IEEE Trans. Knowl. Data Eng. 14(3), 659–665 (2002)
Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, no. 257 in CEUR Workshop Proceedings, pp. 45–58 (2007)
Williams, C.KI., Barber, D.: Bayesian classification with Gaussian processes. IEEE Trans Pattern. Anal. Mach. Intell. 20(12), 1342–1351 (1998)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Features for SAT (2012). Available at www.cs.ubc.ca/labs/beta/Projects/SATzilla/
Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: Satzilla2012: improved algorithm slection based on cost-sensitive classification models. In: Balint, A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (eds.) Proceedings of SAT Challange 2012: Solver and Benchmark Descriptions, Department of Computer Science Series of Publications B, vol. B-2012-2, pp. 57–58. University of Helsinki (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bridge, J.P., Holden, S.B. & Paulson, L.C. Machine Learning for First-Order Theorem Proving. J Autom Reasoning 53, 141–172 (2014). https://doi.org/10.1007/s10817-014-9301-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-014-9301-5