Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Condition monitoring and prediction of solution quality during a copper electroplating process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a method for the monitoring and prediction of the electrolyte quality during the process of copper electroplating. This is important in industry, as any deviation in the solution quality leads to a deterioration of the quality of the processed products. The aim of the study is to identify some physical parameters that are representative of the quality variation during the deposition process. These parameters are then tracked online to continuously assess the solution quality and predict its remaining useful life. To do this, the process behavior is first characterized to derive a nominal model and to identify the physical parameters that can be used to describe the aging variation in the electrolyte quality. The aging model is then explored to assess the current level of the solution quality and to predict its remaining useful life. The proposed method is verified using real data acquired from a specifically designed test bench. The obtained results reveal the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Dini, J. W., & Snyder, D. D. (2010). Electrodeposition of copper. In M. Schlesinger & M. Paunovic (Eds.), Modern electroplating (5th ed., pp. 33–78). New York: Wiley.

    Google Scholar 

  • Gabrielli, C., Moçotéguy, P., Perrot, H., Nieto-Sanz, D., & Zdunek, A. (2006). A model for copper deposition in the damascene process. Electrochimica Acta,51(8–9), 1462–1472.

    Article  Google Scholar 

  • Gabrielli, C., Moçotéguy, P., Perrot, H., Nieto-Sanz, D., & Zdunek, A. (2008). An investigation of copper interconnect deposition bath ageing by electrochemical impedance spectroscopy. Journal of Appled Electrochemistry,38(4), 457–468.

    Article  Google Scholar 

  • Gabrielli, C., Mocoteguy, P., Perrot, H., Zdunek, A., Bouard, P., & Haddix, M. (2004). Electrochemical Impedance spectroscopy investigation of bath aging in damascene process chemistries. Electrochemical and Solid-State Letters,7(3), C31.

    Article  Google Scholar 

  • Gabrielli, C., Mocoteguy, P., Perrot, H., Zdunek, A., & Nieto-Sanz, D. (2007). Influence of the anode on the degradation of the additives in the damascene process for copper deposition. Journal of the Electrochemical Society,154(3), D163.

    Article  Google Scholar 

  • Gouriveau, R., Medjaher, K., & Zerhouni, N. (2016). From prognostics and health systems management to predictive maintenance 1: Monitoring and prognostics. New York: Wiley-ISTE. ISBN 978-1-84821-937-3.

    Book  Google Scholar 

  • Imai, S. I., & Kitabata, M. (2009). Prevention of copper interconnection failure in system on chip using virtual metrology. IEEE Transactions on Semiconductor Manufacturing,22(4), 432–437.

    Article  Google Scholar 

  • Imai, S. I., Kitabata, M., & Tanaka, T. (2009). Interconnection failure caused by bath degradation in copper electroplating and its VM-FDC using mathematical model. In Advanced semiconductor manufacturing conference (ASMC), (pp. 254–258).

  • Jaworski, A., Wikiel, H., & Wikiel, K. (2011). Voltammetry coupled with multiway chemometrics for monitoring and diagnosis of electrodeposition process. Electroanalysis,23(1), 253–263.

    Article  Google Scholar 

  • Jaworski, A., Wikiel, H., & Wikiel, K. (2013). Automated AC voltammetric sensor for early fault detection and diagnosis in monitoring of electroplating processes. Electroanalysis,25(1), 278–288.

    Article  Google Scholar 

  • Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta,43, 87–107.

    Article  Google Scholar 

  • Ming, P. M., Zhu, D., Zeng, Y. B., & Hu, Y. Y. (2010). Wear resistance of copper EDM tool electrode electroformed from copper sulfate baths and pyrophosphate baths. The International Journal of Advanced Manufacturing Technology,50(5), 635–641.

    Article  Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2013). Nonparametric time series modelling for industrial prognostics and health management. The International Journal of Advanced Manufacturing Technology,69(5), 1685–1699. https://doi.org/10.1007/s00170-013-5065-z.

    Article  Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing,27(5), 1037–1048. https://doi.org/10.1007/s10845-014-0933-4.

    Article  Google Scholar 

  • Paunovic, M., & Schlesinger, M. (2006). Fundamentals of electrochemical deposition (2nd ed., pp. 77–112). New York: Wiley.

    Book  Google Scholar 

  • Piratoba Morales, U., Mariño Camargo, A., & Olaya, J. J. (2010). Diagramas Típicos Con Circuitos Equivalentes electrochemical impedance—interpretation of typical diagrams with equivalent circuits. Dyna,77(164), 69–75.

    Google Scholar 

  • Poon, G. K. K., Williams, D. J., & Chin, K. S. (2000). Optimising the lithographic patterning effect in an acid copper electroplating process. The International Journal of Advanced Manufacturing Technology,16(12), 881–888.

    Article  Google Scholar 

  • Ragab, A., Ouali, M. S., Yacout, S., & Osman, H. (2016a). Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan-Meier estimation. Journal of Intelligent Manufacturing,27(5), 943–958.

    Article  Google Scholar 

  • Ragab, A., Yacout, S., Ouali, M.-S., & Osman, H. (2016b). Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-016-1244-8.

    Article  Google Scholar 

  • Schuldiner, S., & Rosen, M. (1972). The exchange current density vs. concentration relation and its use in a rigorous determination of solution purity. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,35(1), 1–6.

    Article  Google Scholar 

  • Sikorskaa, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing,25(5), 1803–1836.

    Article  Google Scholar 

  • Takahashi, K. M. (2000). Electroplating copper onto resistive barrier films. Journal of the Electrochemical Society,147(4), 1414.

    Article  Google Scholar 

  • Tsai, T.-N. (2014). A hybrid intelligent approach for optimizing the fine-pitch copper wire bonding process with multiple quality characteristics in IC assembly. Journal of Intelligent Manufacturing,25(1), 117–192.

    Article  Google Scholar 

  • Vaezi, M., Seitz, H., & Yang, S. (2013). A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology,67(5), 1721–1754.

    Article  Google Scholar 

  • Vogl, G. W., Weiss, B. A., & Helu, M. (2016). A review of diagnostic and prognostic capabilities and best practices for manufacturing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-016-1228-8.

    Article  Google Scholar 

  • Yu, C., Wang, P., Gao, X., & Wang, H. (2015). A novel mathematical method for equivalent circuit modeling determination for electrochemical impedance spectroscopy to study corrosion behavior of corrosion resistant steel. International Journal of Electrochemical Science,10(1), 538–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Medjaher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados, G.E., Lacroix, L. & Medjaher, K. Condition monitoring and prediction of solution quality during a copper electroplating process. J Intell Manuf 31, 285–300 (2020). https://doi.org/10.1007/s10845-018-1445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1445-4

Keywords