Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reconfigurable Control Structure for Robots in Assembly

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The increased use of changeable characteristics in modern manufacturing and robotic systems and applications call for improved system control design that offers some degree of reconfigurability. The need for control reconfiguration of robotic systems arises due to some inherent characteristics of the robotic system, variations of robot parameters due to environmental changes, major task changes typical in production changeover or manufacturing system reconfiguration, or geometry changes due to the reconfiguration of modular manipulators. In this paper, a reconfigurable controller, the Supervisory Control Switching System (SCSS), is proposed to meet the new on-line demands for changeability in robotic systems. The SCSS is capable of selecting the most suitable controller for a particular task or situation, from separate controllers designed a priori. The applicability and effectiveness of the developed switching control scheme have been illustrated through computer simulations of an AdeptOne SCARA manipulators carrying out assembly tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wills, L., Kannan, S., Sander, S., Guler, M., Heck, B., Prasad, J.V.R., Schrage, D.: An open platform for reconfigurable control. Control Syst. Mag. 21(3), 49–64 (2001)

    Article  Google Scholar 

  2. Pritschow, G., Altintas, Y. Jovane, F. Koren, Y.: Open controller architecture – past, present and future. CIRP Ann. Manuf. Tech. 50(2), 463–470 (2001)

    Article  Google Scholar 

  3. Proctor, F.: Practical open architecture controllers for manufacturing application. In: Koren, Y. (ed.) Open Architecture Control Systems. 103–113 (1998)

  4. Wills, L., Sander, S., Kannan, S., Kahn, A., Prasad, J.V.R., Schrage, D.: An open control platform for reconfigurable, distributed, hierarchical control systems. In: Proceedings of the Digital Avionics Systems Conference, Philadelphia, PA, October 2000

  5. Bonissone, P.P., Badami, V., Chiang, K.H., Khedkar, P.S., Marcelle, K.W.: Industrial applications of fuzzy logic at General Electric. Proc. IEEE. 83(3), 450–465 (1995)

    Article  Google Scholar 

  6. Zhang, Y., Jiang, J.: Design of integrated fault detection, diagnosis and reconfigurable control systems. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4, pp 3587–3592 (1999)

  7. Black, S.E., Keller, K., Biswas, G., Davis, J.: Diagnostic/prognostic modeling and reconfigurable control. In: Proceedings of AUTOTESTCON, pp. 344–350 (Sept. 2004)

  8. Zhou, C.J., Ogata, K, Fujii, S.: Adaptive Switching Control Method and its Application to Tracking Control of a Robot. In: Proceedings of IEEE IECON 22nd International Conference. 1, 214–219 (1996)

  9. Lawrence, D.A., Rugh, W.J.: Gain scheduling dynamic linear controllers for a nonlinear plants. Automatica. 31, 381–390 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kuang-Hsuan, T. Shamma, J.S.: Nonlinear gain-scheduled control design using set-valued methods. In: Proceedings of the American Control Conference, Philadelphia, PA, 1998

  11. Hocherman-Frommer, J. Kulkarni S.R.: Controller Switching Based on Output Prediction Errors. IEEE Trans. Automat. Contr. 43(5), 596–607 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hespanha, J., Morse, A.: Switching between stabilizing controllers. Automatica. 38, 1905–1917 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eker, J., Malmborg, J.: Design and implementation of a hybrid control strategy. Control Syst. Mag. 19(4), 12–21 (1999)

    Article  Google Scholar 

  14. Hladky, V.: A Contribution to the Hybrid Control. In: 3rd Slovakian–Hungarian Joint Symposium on Applied Machine Intelligence, Herlany, Slovakia, January 21–22, 2005

  15. Zhang, M., Tarn, T.-J.: A hybrid switching control strategy for nonlinear and underactuated mechanical systems. IEEE Trans. Automat. Contr. 48(10), 1777–1782 (2003)

    Article  MathSciNet  Google Scholar 

  16. Koren, Y.: What is reconfigurable system. Keynote in the 3rd International Conference on Reconfigurable Manufacturing, Michigan, May 2005

  17. Mehrabi, M.G., Ulsoy, A.G., Koren, Y.: Reconfigurable Manufacturing Systems: Key to Future Manufacturing. J. Intell. Manuf. 11(4), 403–419 (2000)

    Article  Google Scholar 

  18. ElMaraghy, H.: Flexible and Reconfigurable Manufacturing Systems. Int. J. Flex. Manuf. Syst. 17(4), 261–267 (2006) (Special Issue)

    Article  MATH  Google Scholar 

  19. Fisher, R., Podhorodeski, R.P., Nokleby, S.B.: Design of a reconfigurable planar parallel manipulator. J. Robot. Syst. 21(12), 665–675 (2004)

    Article  MATH  Google Scholar 

  20. Ji, Z., Song, P.: Design of a Reconfigurable Platform Manipulator, J. Robot. Syst. 15(6), 341–346 (1998)

    Article  MATH  Google Scholar 

  21. Bouffard-Vercelli, Y., Dauchez, P., Delebarre, X.: Force-controlled assembly with a two-arm robot: how and where to perform it within the workspace. In: Proceedings of the 1993 IEEYRSJ International Conference On Intelligent Robots and Systems, Yokohama, Japan July 26–30, 1993

  22. Cao, Y., de Silva, C.W.: Supervised Switching Control of a Deployable Manipulator System. International Journal of Control and Intelligent System 34(2), 153–165 (2006)

    Google Scholar 

  23. ElBeheiry, E.M., ElMaraghy, W.H., ElMaraghy, H.A.: The structured design of a reconfigurable control process. In: Proceeding of the 2004 CIRP Design Seminar, 16–18 May, Cairo, Egypt, 2004

  24. ElMaraghy, H.A., Johns, B.: An investigation into the compliance of SCARA robots. J. Dyn. Syst. Meas. Contr. 110, 18–30(1988)

    Article  Google Scholar 

  25. de Silva, C.W.: Intelligent control. CRC Press, Boca Raton, FL (1995)

  26. Slotine, J.-J.E., Li, W.: On the Adaptive Control of Robot Manipulators. International Journal of Robot Research 6(3), 49–59 (1987)

    Article  Google Scholar 

  27. Spong, M., Vidyasagar, M.: Robot dynamics and control. John Wiley & Sons (1989)

  28. Chin, K.S., Ratnam, M.M., Mandava, R.: Force-guided robot in automated assembly of mobile phone: overcoming component misalignment. Assem. Autom. 24(1), 71–77 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., ElMaraghy, H.A. & Azab, A. Reconfigurable Control Structure for Robots in Assembly. J Intell Robot Syst 50, 419–439 (2007). https://doi.org/10.1007/s10846-007-9173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9173-6

Keywords