Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model-based Predictive Control of Hybrid Systems: A Probabilistic Neural-network Approach to Real-time Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes an approach for reducing the computational complexity of a model-predictive-control strategy for discrete-time hybrid systems with discrete inputs only. Existing solutions are based on dynamic programming and multi-parametric programming approaches, while the one proposed in this paper is based on a modified version of performance-driven reachability analyses. The algorithm abstracts the behaviour of the hybrid system by building a ’tree of evolution’. The nodes of the tree represent the reachable states of a process, and the branches correspond to input combinations leading to designated states. A cost-function value is associated with each node and based on this value the exploration of the tree is driven. For any initial state, an input sequence is thus obtained, driving the system optimally over a finite horizon. According to the model predictive strategy, only the first input is actually applied to the system. The number of possible discrete input combinations is finite and the feasible set of the states of the system may be partitioned according to the optimization results. In the proposed approach, the partitioning is performed offline and a probabilistic neural network (PNN) is then trained by the set of points at the borders of the state-space partitions. The trained PNN is used as a system-state-based control-law classifier. Thus, the online computational effort is minimized and the control can be implemented in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baotić, M., Christophersen, F.J., Morari, M.: A new algorithm for constrained finite time optimal control of hybrid systems with a linear performance index. In: European Control Conference. University of Cambridge, 2003

  2. Barton, P.I., Banga, J.R., Galán, S.: Optimization of hybrid discrete/continuous dynamic systems. Comput. Chem. Eng. 24, 2171–2182 (2000)

    Article  Google Scholar 

  3. Bemporad, A.: Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form. IEEE Trans. Automat. Contr. 49(5), 832–838 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bemporad, A., Giovanardi, L., Torrisi, F.D.: Performance driven reachability analysis for optimal scheduling and control of hybrid systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, pp. 969–974. IEEE, Sydney (2000)

    Google Scholar 

  5. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bemporad, A., Morari, M.: Optimization-based hybrid control tools. In: Proceedings of the American Control Conference, pp. 1689–1703. IEEE, Arlington (2001)

    Google Scholar 

  7. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Hybrid systems: Computation and Control, Lecture Notes in Computer Science, vol. 1790, pp. 45–58. Springer, New York (2000)

    Google Scholar 

  9. Borrelli, F.: Constrained optimal control of linear and hybrid systems. In: Lecture Notes in Control and Information Sciences, vol. 290. Springer, New York (2003)

    Google Scholar 

  10. Borrelli, F., Baotić, M., Bemporad, A., Morari, M.: An efficient algorithm for computing the state feedback solution to optimal control of discrete time hybrid systems. In: Proceedings of the American Control Conference, pp. 4717–4722. Denver, 2003

  11. Borrelli, F., Baotić, M., Bemporad, A., Morari, M.: Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41(10), 1709–1721 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cassandras, C.G., Pepyne, D.L., Wardi, Y.: Optimal control of a class of hybrid systems. IEEE Trans. Automat. Contr. 46(3), 398–415 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dua, V., Bozinis, N.A., Pistikopoulos, E.N.: A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26(4–5), 715–733 (2002)

    Article  Google Scholar 

  14. Ferrari-Trecate, G., Cuzzola, F.A., Mignone, D., Morari, M.: Analysis of discrete-time piecewise affine and hybrid systems. Automatica 38(12), 2139–2146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gokbayrak, K., Cassandras, C.G.: A hierarchical decomposition method for optimal control of hybrid systems. In: Proceedings of the 38th IEEE Conference on Decision and Control, pp. 1816–1821. Phoenix, 1999

  16. Hedlund, S., Rantzer, A.: Optimal control of hybrid systems. In: Proceedings of the 38th IEEE Conference on Decision and Control, pp. 3972–3976. Phoenix, 1999

  17. Heemels, W.P.M.H., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001)

    Article  MATH  Google Scholar 

  18. Kerrigan, E.C., Mayne, D.Q.: Optimal control of constrained, piecewise affine systems with bounded disturbances. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, Nevada, USA (2002)

  19. Lincoln, B., Rantzer, A.: Optimizing linear system switching. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2063–2068. Orlando, 2001

  20. Morari, M., Baotic, M., Borrelli, F.: Hybrid systems modeling and control. Eur. J. Control 9(2–3), 177–189 (2003)

    Google Scholar 

  21. Pepyne, D.L., Cassandras, C.G.: Optimal control of hybrid systems in manufacturing. Proc. IEEE 88(7), 1108–1123 (2000)

    Article  Google Scholar 

  22. Potočnik, B., Bemporad, A., Torrisi, F.D., Mušič, G., Zupančič, B.: Hysdel modeling and simulation of hybrid dynamical systems. In: 4th MATHMOD Vienna, Proceedings (ARGESIM Report, no. 24). Vienna University of Technology, Vienna (2003)

  23. Potočnik, B., Bemporad, A., Torrisi, F.D., Mušič, G., Zupančič, B.: Hybrid modelling and optimal control of a multiproduct batch plant. Control Eng. Pract. 12(9), 1127–1137 (2004)

    Article  Google Scholar 

  24. Potočnik, B., Mušič, G., Zupančič, B.: A new technique for translating discrete hybrid automata into piecewise affine system. Math. Comput. Model. Dyn. Syst. 10(1), 41–57 (2004)

    Article  Google Scholar 

  25. Rantzer, A., Johansson, M.: Piecewise linear quadratic optimal control. IEEE Trans. Automat. Contr. 45(5), 629–637 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sontag, E.D.: Nonlinear regulation: the piecewise linear approach. IEEE Trans. Automat. Contr. 26(2), 346–358 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. Specht, D.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)

    Article  Google Scholar 

  28. Torrisi, F.D., Bemporad, A.: HYSDEL—a tool for generating computational hybrid models. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gašper Mušič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potočnik, B., Mušič, G., Škrjanc, I. et al. Model-based Predictive Control of Hybrid Systems: A Probabilistic Neural-network Approach to Real-time Control. J Intell Robot Syst 51, 45–63 (2008). https://doi.org/10.1007/s10846-007-9180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9180-7

Keywords