Abstract
This paper proposes vision-based techniques for localizing an unmanned aerial vehicle (UAV) by means of an on-board camera. Only natural landmarks provided by a feature tracking algorithm will be considered, without the help of visual beacons or landmarks with known positions. First, it is described a monocular visual odometer which could be used as a backup system when the accuracy of GPS is reduced to critical levels. Homography-based techniques are used to compute the UAV relative translation and rotation by means of the images gathered by an onboard camera. The analysis of the problem takes into account the stochastic nature of the estimation and practical implementation issues. The visual odometer is then integrated into a simultaneous localization and mapping (SLAM) scheme in order to reduce the impact of cumulative errors in odometry-based position estimation approaches. Novel prediction and landmark initialization for SLAM in UAVs are presented. The paper is supported by an extensive experimental work where the proposed algorithms have been tested and validated using real UAVs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amidi, O., Kanade, T., Fujita, K.: A visual odometer for autonomous helicopter fight. In: Proceedings of the Fifth International Conference on Intelligent Autonomous Systems (IAS-5), June 1998
Betge-Brezetz, S., Hebert, P., Chatila, R., Devy, M.: Uncertain map making in natural environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1048–1053, April 1996
Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13, 251–263 (1997)
Byrne, J., Cosgrove, M., Mehra, R.: Stereo based obstacle detection for an unmanned air vehicle. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 2830–2835, May 2006
Caballero, F., Merino, L., Ferruz, J., Ollero, A.: A visual odometer without 3D reconstruction for aerial vehicles. applications to building inspection. In: Proceedings of the International Conference on Robotics and Automation, pp. 4684–4689. IEEE, April 2005
Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Improving vision-based planar motion estimation for unmanned aerial vehicles through online mosaicing. In: Proceedings of the International Conference on Robotics and Automation, pp. 2860–2865. IEEE, May 2006
Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE International Conference on Robotics and Automation, pp. 2004–2009, April 2007
Conte, G., Doherty, P.: An integrated UAV navigation system based on aerial image matching. In: Proceedings of the IEEE Aerospace Conference, pp. 1–10 (2008)
Corke, P.I., Sikka, P., Roberts, J.M.: Height estimation for an autonomous helicopter. In: Proceedings of ISER, pp. 101–110 (2000)
Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision, pp. 1403–1410, October 2003
Deans, M., Hebert, M.: Experimental comparison of techniques for localization and mapping using a bearings only sensor. In: Proceedings of the Seventh International Symposium on Experimental Robotics, December 2000
Demonceaux, C., Vasseur, P., Pegard, C.: Omnidirectional vision on UAV for attitude computation. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 2842–2847, May 2006
Dickmanns, E.D., Schell, F.R.: Autonomous landing of airplanes using dynamic machine vision. In: Proc. of the IEEE Workshop Applications of Computer Vision, pp. 172–179, December 1992
Feder, H.J.S., Leonard, J.J., Smith, C.M.: Adaptive mobile robot navigation and mapping. Int. J. Rob. Res. 18(7), 650–668 (1999) July
Garcia-Pardo, P.J., Sukhatme, G.S., Montgomery, J.F.: Towards vision-based safe landing for an autonomous helicopter. Robot. Auton. Syst. 38(1), 19–29 (2001)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)
Hrabar, S., Sukhatme, G.S.: Omnidirectional vision for an autonomous helicopter. In: Proceedings of the International Conference on Robotics and Automation, vol. 1, pp. 558–563 (2003)
Hygounenc, E., Jung, I.-K., Soueres, P., Lacroix, S.: The autonomous blimp project of LAAS-CNRS: achievements in flight control and terrain mapping. Int. J. Rob. Res. 23(4-5), 473–511 (2004)
Kim, J., Sukkarieh, S.: Autonomous airborne navigation in unknown terrain environments. IEEE Trans. Aerosp. Electron. Syst. 40(3), 1031–1045 (2004) July
Kwok, N.M., Dissanayake, G.: An efficient multiple hypothesis filter for bearing-only SLAM. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 736–741, October 2004
Lacroix, S., Jung, I.K., Soueres, P., Hygounenc, E., Berry, J.P.: The autonomous blimp project of LAAS/CNRS - current status and research challenges. In: Proceeding of the International Conference on Intelligent Robots and Systems, IROS, Workshop WS6 Aerial Robotics, pp. 35–42. IEEE/RSJ (2002)
Langedaan, J., Rock, S.: Passive GPS-free navigation of small UAVs. In: Proceedings of the IEEE Aerospace Conference, pp. 1–9 (2005)
Lemaire, T., Lacroix, S., Solà, J.: A practical 3D bearing only SLAM algorithm. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2449–2454 (2005)
Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 1442–1447, November 1991
Ling, L., Ridley, M., Kim, J.-H., Nettleton, E., Sukkarieh, S.: Six DoF decentralised SLAM. In: Proceedings of the Australasian Conference on Robotics and Automation (2003)
Mahony, R., Hamel, T.: Image-based visual servo control of aerial robotic systems using linear image features. IEEE Trans. Robot. 21(2), 227–239 (2005)
Mejías, L., Saripalli, S., Campoy, P., Sukhatme, G.S.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field. Robot. 23(3–4), 185–199 (2006)
Montiel, J., Civera J, Davison, A.: Unified inverse depth parametrization for monocular SLAM. In: Robotics: Science and Systems, August 2006
Ollero, A., Ferruz, J., Caballero, F., Hurtado, S., Merino, L.: Motion compensation and object detection for autonomous helicopter visual navigation in the COMETS system. In: Proceedings of the International Conference on Robotics and Automation, ICRA, pp. 19–24. IEEE (2004)
Ollero, A., Merino, L.: Control and perception techniques for aerial robotics. Annu. Rev. Control, Elsevier (Francia), 28, 167–178 (2004)
Papadopoulo, T., Lourakis, M.I.A.: Estimating the jacobian of the singular value decomposition: theory and applications. In: Proceedings of the 2000 European Conference on Computer Vision, vol. 1, pp. 554–570 (2000)
Proctor, A.A., Johnson, E.N., Apker, T.B.: Vision-only control and guidance for aircraft. J. Field. Robot. 23(10), 863–890 (2006)
Remuss, V., Musial, M., Hommel, G.: Marvin - an autonomous flying robot-bases on mass market. In: International Conference on Intelligent Robots and Systems, IROS. Proceedings of the Workshop WS6 Aerial Robotics, pp. 23–28. IEEE/RSJ (2002)
Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003) June
Saripalli, S., Sukhatme, G.S.: Landing on a mobile target using an autonomous helicopter. In: Proceedings of the International Conference on Field and Service Robotics, FSR, July 2003
Shakernia, O., Vidal, R., Sharp, C., Ma, Y., Sastry, S.: Multiple view motion estimation and control for landing an aerial vehicle. In: Proceedings of the International Conference on Robotics and Automation, ICRA, vol. 3, pp. 2793–2798. IEEE, May 2002
Srinivasan, M.V., Zhang, S.W., Garrant, M.A.: Landing strategies in honeybees, and applications to UAVs. In: Springer Tracts in Advanced Robotics, pp. 373–384. Springer-Verlag, Berlin (2003)
Triggs, B.: Autocalibration from planar scenes. In: Proceedings of the 5th European Conference on Computer Vision, ECCV, vol. 1, pp. 89–105. Springer-Verlag, London, UK (1998)
Tsai, R.Y., Huang, T.S., Zhu, W.-L.: Estimating three-dimensional motion parameters of a rigid planar patch, ii: singular value decomposition. IEEE Trans. Acoust. Speech Signal Process. 30(4), 525–534 (1982) August
Vidal, R., Sastry, S., Kim, J., Shakernia, O., Shim, D.: The Berkeley aerial robot project (BEAR). In: Proceeding of the International Conference on Intelligent Robots and Systems, IROS, pp. 1–10. IEEE/RSJ (2002)
Vidal-Calleja, T., Bryson, M., Sukkarieh, S., Sanfeliu, A., Andrade-Cetto, J.: On the observability of bearing-only SLAM. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 1050–4729, April 2007
Volpe, J.A.: Vulnerability assessment of the transportation infrastructure relying on the global positioning system. Technical report, Office of the Assistant Secretary for Transportation Policy, August (2001)
Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. In: Proc. of AIAA Guidance, Navigation, and Control Conference and Exhibit (2005)
Yakimenko, O.A., Kaminer, I.I., Lentz, W.J., Ghyzel, P.A.: Unmanned aircraft navigation for shipboard landing using infrared vision. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1181–1200 (2002) October
Zhang, Z., Hintz, K.J.: Evolving neural networks for video attitude and hight sensor. In: Proc. of the SPIE International Symposium on Aerospace/Defense Sensing and Control, vol. 2484, pp. 383–393 (1995) April
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is partially supported by the AWARE project (IST-2006-33579) funded by the European Commission, and the AEROSENS project (DPI-2005-02293) funded by the Spanish Government.
Rights and permissions
About this article
Cite this article
Caballero, F., Merino, L., Ferruz, J. et al. Vision-Based Odometry and SLAM for Medium and High Altitude Flying UAVs. J Intell Robot Syst 54, 137–161 (2009). https://doi.org/10.1007/s10846-008-9257-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-008-9257-y