Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Contour Tracking of a Redundant Robot Using Integral Variable Structure Control with Output Feedback

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work examines the contour tracking problem of redundant robot on a path with singularity. Using an optimal quadratic programming method is to solve the singularity problem and the computing load of motion planning is reduced by a novel hybrid motion planning method. To achieve contour tracking with output feedback, an integral sliding mode control with a high-gain observer is employed to eliminate the chattering due to discontinuous switching control of the sliding-mode control and maintain robustness of the ideal sliding mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang, K.D., Yan, G.H., Yan, B.: Passive compliance control of a weld inspection manipulator for intersecting pipes. Adv. Robot. 23(10), 1579–1599 (2009)

    Article  Google Scholar 

  2. Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10, 45–53 (1969)

    Google Scholar 

  3. Maciejewski, A., Klein, C.: The singular-value decomposition: computation and application to robots. Int. J. Rob. Res. 8(6), 63–79 (1989)

    Article  Google Scholar 

  4. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control 10(8), 163–171 (1986)

    Article  Google Scholar 

  5. Liu, T.S., Tsay, S.Y.: Singularity of robotic kinematics: a differential motion approach. Mech. Mach. Theory 25(4), 439–448 (1990)

    Article  Google Scholar 

  6. Greville, T.N.E.: The pseudo inverse of a rectangular or singular matrix and its application to the solution of system of linear equations. SIAM Rev. 1(1), 38–43 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mayorga, R.V., Janabi-Sharifi, F., Wong, A.K.C.: A fast approach for the robust trajectory planning of redundant robot manipulators. J. Robot. Syst. 12(2), 147–161 (1995)

    Article  MATH  Google Scholar 

  8. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Rob. Res. 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  9. Mayorga, R.V., Wong, A.K.C.: A singularities avoidance method for the trajectory planning of redundant and nonredundant robot manipulators. In: Proc. IEEE Int. Conf. Robotics Automat., pp. 1707–1712 (1987)

  10. Mayorga, R.V., Wong, A.K.C.: A singularities prevention approach for redundant robot manipulators. In: Proc. IEEE Int. Conf. Robotics Automat., pp. 812–817 (1990)

  11. Chen, C.L., Lin, C.J.: Motion planning of redundant robots. J. Robot. Syst. 14(12), 839–850 (1997)

    Article  MATH  Google Scholar 

  12. Lin, C.J.: Motion planning of redundant robots by perturbation method. Mechatronics 14(3), 281–297 (2004)

    Article  Google Scholar 

  13. D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, pp. 298–303 (2001)

  14. Koker, R., Oz, C., Cakar, T., Ekiz, H.: A study of neural network based inverse kinematics solution for a three-joint robot. Robot Autonomous Systems 49, 227–234 (2004)

    Article  Google Scholar 

  15. Ogawa, T., Matsuura, H., Kanada, H.: A Solution of inverse kinematics of robot arm using network inversion. In: Proceedings of the 2005 International Conference on Computational Intelligence for Modeling, Control and Automation (2005)

  16. Koker, R.: Reliability-based approach to the inverse kinematics solution of robots using Elman’s networks. J. Eng. Appl. Artif. 18, 685–693 (2005)

    Article  Google Scholar 

  17. Bingual, Z., Ertunc, H.M., Oysu, C.: Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with offset. In: 2005 ICSC Congress on Computational Intelligence (2005)

  18. Hasan, A.T., Hamouda, A.M.S., Ismail, N., Al-Assadi, H.M.A.A.: An adaptive-learning algorithm to solve the inverse kinematics problem of a 6 D.O.F. serial robot manipulator. J. Adv. Eng. Software 37, 432–438 (2006)

    Article  Google Scholar 

  19. Hasan, A.T., Ismail, N., Hamouda Ishak Aris, A.M.S., Marhaban, M.H., Al-Assadi, H.M.A.A.: Artificial neural network-based kinematics Jacobian solution for serial manipulator passing through singular configurations. J. Adv. Eng. Software 41, 359–367 (2010)

    MATH  Google Scholar 

  20. Feng, G.: Improving tracking control for robots using neural networks. Int. J. Robot. Autom. 11(2), 74–82 (1996)

    Google Scholar 

  21. Desa, S., Johnson, C.A.: Synthesis of control systems for manipulators using multivariable robust servomechanism theory. Int. J. Robot. Res. 4, 18–34 (1985)

    Article  Google Scholar 

  22. Spong, M.W., Thorp, J.S., Sastry, S.S.: Robust microprocessor control of robot manipulators. Automatica 23, 373–379 (1987)

    Article  MATH  Google Scholar 

  23. Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. Int. J. Robot. Res. 6, 16–28 (1987)

    Article  Google Scholar 

  24. Wijesoma, S.W., Richards, R.J.: Robust trajectory following of robots using computed torque structure with VSS. Int. J. Control 52(4), 935–962 (1990)

    Article  MATH  Google Scholar 

  25. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40, 2–21 (1993)

    Article  Google Scholar 

  26. Slotine, J.J., Sastry, S.S.: Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. Int. J. Contr. 38, 465–492 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tso, S.K., Law, P.L.: Design and performance studies of model-based variable-structure adaptive controllers for industrial manipulators. Proc. IMeche 206(4), 245–262 (1992)

    Article  Google Scholar 

  28. Shyu, K.K., Tsai, Y.W., Yung, C.F.: A modified variable structure controller. Automatica 28, 1209–1213 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor & Francis, New York (1998)

    Google Scholar 

  30. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th Conference on Decision and Control, pp. 4591–4596 (1996)

  31. Oh, S., Khalil, H.K.: Output feedback stabilization using variable structure control. Int. J. Control 62, 831–848 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Edwards, C., Spurgeon, S.: Robust output tracking using a sliding-mode controller/observer scheme. Int. J. Control 64, 967–983 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lee, K.W., Khalil, H.K.: Adaptive output feedback control of robot manipulators using high-gain observer. Int. J. Control 67(6), 869–886 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nicosia, S., Tornambe, A., Valigi, P.: Experimental results in state estimation of industrial robots. In: Proceedings of the 29th IEEE Conference on Decision and Control, pp. 360–365 (1990)

  35. Khalil, H.K.: Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans. Automat. Contr. 41, 177–188 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Canudas de Wit, C., Slotine, J.-J.E.: Sliding observers for robot manipulators. Automatica 27, 859–864 (1991)

    Article  MathSciNet  Google Scholar 

  37. Nicosia, S., Tornambe, A.: High-gain observers in the state and parameter estimation of robots having elastic joints. Syst. Control Lett. 13, 331–337 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nicosia, S., Tomei, P.: Robot control by using only joint position measurements. IEEE Trans. Automat. Contr. 35, 1058–1061 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Jer Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CJ., Lee, KS. Contour Tracking of a Redundant Robot Using Integral Variable Structure Control with Output Feedback. J Intell Robot Syst 62, 241–270 (2011). https://doi.org/10.1007/s10846-010-9461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9461-4

Keywords