Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Stereo Vision and Inertial Navigation System for a Quad-Rotor UAV

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the development of a quad-rotor robotic platform equipped with a visual and inertial motion estimation system. Our objective consists of developing a UAV capable of autonomously perform take-off, positioning, navigation and landing in unknown environments. In order to provide accurate estimates of the UAV position and velocity, stereo visual odometry and inertial measurements are fused using a Kalman Filter. Real-time experiments consisting on motion detection and autonomous positioning demonstrate the performance of the robotic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Reinhardt, J.R., James, J.E., Flannagan, E.M.: Future employment of UAVS: issues of jointness. Joint Force Q. 22, 36–41 (1999)

    Google Scholar 

  2. He, R., Prentice, S., Roy, N.: Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: IEEE International Conference on Robotics and Automation. Pasadena, CA, USA (2008)

  3. Zufferey, J.C., Floreano, D.: Toward 30-gram autonomous indoor aircraft: vision-based obstacle avoidance and altitude control. In: IEEE International Conference on Robotics and Automation. Barcelona, Spain (2005)

  4. Hrabar, S., Sukhatme, G.: Vision-based navigation through urban canyons. J. Field Robot. 26(5), 431–452 (2009)

    Article  Google Scholar 

  5. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009)

    Article  Google Scholar 

  6. Corke, P.I., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: IEEE International Conference on Intelligent Robots and Systems. Sendai, Japan (2004)

  7. Levin, A., Szeliski, R.: Visual odometry and map correlation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA (2004)

  8. Bloesch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA (2010)

  9. Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the Mars exploration rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)

    Article  Google Scholar 

  10. Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Robot. Syst. 21(2), 43–51 (2004)

    Article  Google Scholar 

  11. Kelly, J., Saripalli, S., Sukhatme, G.S.: Combined visual and inertial navigation for an unmanned aerial vehicle. In: International Conference on Field and Service Robotics. Chamonix, France (2007)

  12. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: Unmanned Systems Technology XI, Proc. of SPIE, vol. 7332 (2009)

  13. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  14. Etkin, B., Reid, L.D.: Dynamics of Flight. John Wiley and Sons, Inc., New York (1959). ISBN 0-471-03418-5

    Google Scholar 

  15. Goldstein, H.: Classical Mechanics, 2nd edn. Addison Wesley, Redwood City (1980)

    MATH  Google Scholar 

  16. Altuğ, E., Ostrowski, J.P. Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Rob. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  17. Sünderhauf, N., Protzel, P.: Stereo odometry—a review of approaches, technical report 3/07. Institute of Automation, Department of Electrical Engineering and Information Technology. Chemnitz University of Technology (2007)

  18. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. Seattle, USA (1994)

  19. Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker: description of the algorithm. Microprocessor Research Labs, Intel Corporation (2002)

  20. Open Computer Vision: http://sourceforge.net/projects/opencvlibrary/. Accessed December 2010

  21. Bouguet, J.Y.: Camera calibration toolbox for matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed December 2010

  22. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer, New York (2005)

    Google Scholar 

  23. Achtelik, M.: Vision-based pose estimation for autonomous micro aerial vehicles in gps-denied areas. Master’s thesis, Technische Universitat Munchen (2009)

  24. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)

    Article  Google Scholar 

  25. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  26. Nister, D., Naroditsky, O. Bergen, J.: Visual odometry. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659. Washington, DC, USA (2004)

  27. Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control. Lett. 18(3), 165–171 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Garcia Carrillo, L.R., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad-rotor UAV using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rodolfo García Carrillo.

Additional information

This work was partially supported by the Mexican National Council for Science and Technology (CONACYT).

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Carrillo, L.R., Dzul López, A.E., Lozano, R. et al. Combining Stereo Vision and Inertial Navigation System for a Quad-Rotor UAV. J Intell Robot Syst 65, 373–387 (2012). https://doi.org/10.1007/s10846-011-9571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9571-7

Keywords