Abstract
Faults or failures are inevitable to occur and their prompt detection and isolation are essential for the dependability of various systems and for avoiding damages to the system itself, persons and the environment. Therefore, the safety of helicopter platforms have attracted the attention of many researchers in the past two decades. In order to deal with these problems, this paper presents an overview of the recent development and current researches in the field of fault diagnosis, including analytical/model-based, signal processing-based and knowledge-based techniques, and also passive/active fault- tolerant control approaches. Among various helicopters, single-rotor aerial vehicles, i.e. manned helicopters, unmanned helicopters, two and three degree-of-freedom unmanned helicopter experimental platforms, are considered for providing an overall picture of the fault diagnosis and fault-tolerant control approaches based on the review of journal articles in last two decades, conference articles in last several years and some books.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Carnegie Mellon University: Autonomous helicopter project. http://www.cs.cmu.edu/afs/cs/project/chopper/www (1998). Accessed 30 Aug 2013
National University of Singapore: Lion UAV systems. http://uav.ece.nus.edu.sg/uavfamilies.html (2010). Accessed 30 Aug 2013
Eurocopter: Manned helicopter. http://www.eurocopter.com (2013). Accessed 30 Aug 2013
The National Transportation Safety Board (NTSB) aviation accident database & synopses. http://www.ntsb.gov/aviationquery/index.aspx (2013). Accessed 30 Aug 2013
Afonso, R.J.M., Galvao, R.K.H.: Predictive control of a helicopter model with tolerance to actuator faults. In: Conference on Control and Fault-Tolerant Systems, pp. 744–751, Nice, France (2010)
Alkahe, J., Oshman, Y., Rand, O.: Adaptive estimation methodology for helicopter blade structural damage detection. J. Guid. Control. Dyn. 25(6), 1049–1057 (2002)
Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44, 1859–1866 (2008)
Arne, W., Jorgen, A.: Robust fault isolation observers for non-square systems—a parametric approach. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 1275–1280. Mexico City, Mexico (2012)
Bibik, P., Narkiewicz, J.: Helicopter optimal control after power failure using comprehensive dynamic model. J. Guid. Control. Dyn. 35(4), 1354–1362 (2012)
Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Fault-diagnosis Systems: an Introduction from Fault Detection to Fault Tolerance. Control Systems Series, Springer-Verlag London (2006)
Cai, G., Chen, B., Kemao, P.: Modeling and control of the yaw channel of a UAV helicopter. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)
Cai, G., Chen, B., Lee, T.: Unmanned Rotorcraft System. Springer London (2011)
Chandhrasekaran, V.K., Eunmi, C.: Fault tolerance system for UAV using hardware in the loop simulation. In: 4th International Conference on New Trends in Information Science and Service Science, pp. 293–300. Gyeongju, South Korea (2010)
Chen, F., Jiang, B., Tao, G.: Fault self-repairing flight control of a small helicopter via fuzzy feedforward and quantum control techniques. Cogn. Comput. 4(4), 543–548 (2012)
Chen, F., Jiang, B., Tao, G.: A self-repairing control scheme for the helicopter using adaptive sliding model backstepping technology. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 788–793. Mexico City, Mexico (2012)
Chen, J., Patton, R.: Robust Model Based Fault Diagnosis for Dynamic Systems. Kluwer, Boston, MA (1999)
Chen, Z., Yang, Y.: Fault diagnostics of helicopter gearboxes based on multi-sensor mixtured hidden Markov models. J. Vib. Acoust. 134(3) (2012)
Clothier, R.A., Wu, P.: A review of system safety failure probability objectives for unmanned aircraft systems. In: 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability. Helsinki, Finland (2012)
Delgado, I., Dempsey, P., Simon, D.: A survey of current rotorcraft propulsion health monitoring technologies. In: Internal Report from Glenn Research Center, NASA, USA (2012)
Drozeski, G.R.: A fault-tolerant control architecture for unmanned aerial vehicles. Ph.D. thesis, Georgia Institute of Technology (2005)
Drozeski, G.R., Saha, B., Vachtsevanos, G.J.: A fault detection and reconfigurable control architecture for unmanned aerial vehicles. In: IEEE Aerospace Conference, pp. 1–9. Big Sky, MT, USA (2005)
Ducard, G.J.J.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Advances in Industrial Control Series. Springer, New York (2009)
Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight Control: a Benchmark Challenge. Lecture Notes in Control and Information Sciences. Springer, New York (2010)
Ehinger, R., Fetty, J., Laberge, K.: Planetary gearbox fault detection using vibration separation techniques. Tech. rep., National Aeronautics and Space Administration (2011)
Enns, R., Si, J.: Helicopter flight-control reconfiguration for main rotor actuator failures. J. Guid. Control. Dyn. 26(4), 572–584 (2003)
Firpi, H., Vachtsevanos, G.: Genetically programmed-based artificial features extraction applied to fault detection. Eng. Appl. Artif. Intell. 21(4), 558–568 (2008)
Ganguli, R., Chopra, I., Haas, D.J.: Detection of helicopter rotor system simulated faults using neural networks. J. Am. Helicopter Soc. 42(2), 161–171 (1997)
Ganguli, R., Chopra, I., Haas, D.J.: Helicopter rotor system fault detection using physics-based model and neural networks. AIAA J. 36(6), 1078–1086 (1998)
Garcia, R.D., Brown, A.: Control and limitations of navigating a tail rotor/actuator failed unmanned helicopter. J. Intell. Robot. Syst. 61(1–4), 5–13 (2011)
Garcia, R.D., Valavanis, K.P., Kandel, A.: Autonomous helicopter navigation during a tail rotor failure utilizing fuzzy logic. In: IEEE Mediterranean Conference on Control and Automation, pp. 1–6. Athens, Greece (2007)
Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker Incorporated, New York (1988)
Girondin, V., Morel, H., Cassar, J.: Vibration-based fault detection of sharp bearing faults in helicopters. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 180–185. Mexico City, Mexico (2012)
Harkegard, O., Glad, S.: Resolving actuator redundancy-optimal control vs. control allocation. Automatica 41, 137–144 (2004)
Hassan, M.A., Coats, D., Shin, Y.: Bicoherence analysis for condition assessment of multi-faulted helicopter drivetrain systems. In: American Helicopter Society International Annual Forum, vol. 1, pp. 2326–2331. Fort Worth, TX (2012)
Heredia, G., Caballero, F., Maza, I.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009)
Heredia, G., Ollero, A.: Sensor fault detection in small autonomous helicopters using observer/Kalman filter identification. In: IEEE International Conference on Mechatronics, pp. 1–6. Malaga, Spain (2009)
Heredia, G., Ollero, A.: Detection of sensor faults in small helicopter UAVs using observer/Kalman filter identification. Math. Probl. Eng. (online) 2011, 20 pages (2011)
Heredia, G., Ollero, A., Bejar, M.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2), 90–99 (2008)
Heredia, G., Ollero, A., Mahtani, R.: Detection of sensor faults in autonomous helicopters. In: IEEE International Conference on Robotics and Automation, pp. 2229–2234. Barcelona, Spain (2005)
Heredia, G., Remu, B., Ollero, A.: Actuator fault detection in autonomous helicopters. In: 5th IFAC Symposium on Intelligent Autonomous Vehicles, pp. 1–6. Lisbon, Portugal (2004)
Hood, A., Pines, D.: Sun gear fault detection on an OH-58C helicopter transmission. In: American Helicopter Society International Annual Forum, vol. 3, pp. 1664–1690. Virginia Beach, VA (2011)
Isermann, R.: Fault-diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin, Germany (2006)
Jiang, B., Chowdhury, F.N.: Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans. Control Syst. Technol. 13(3), 493–499 (2005)
Johansen, T.A., Fossen, T.I.: Control allocation—a survey. Automatica 49(5), 1087–1103 (2013)
Johnson, E., Schrage, D.: The Georgia Tech unmanned aerial research vehicle: GTMax. In: AIAA Guidance, Navigation, and Control Conference, Austin, TX (2003)
Johnson, W.: Helicopter Theory. Dover, New York (1980)
Kaliappan, V.K., Young, H., Budiyono, A.: Fault tolerant controller design for component faults of a small scale unmanned aerial vehicle. In: 8th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 79–84. Incheon, Korea (2011)
Kapoor, D., Deb, D., Sahai, A.: Adaptive failure compensation for coaxial rotor helicopter under propeller failure. In: American Control Conference, pp. 2539–2544. Montreal, Canada (2012)
Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W.: Fault Diagnostics Models, Artificial Intelligence, Applications. Springer, Berlin, Germany (2004)
Kuo, T., Huang, H.: Expert system application for helicopter fault diagnosis. International Journal of Digital Content Technology and its Applications 6(22), 704–712 (2012)
Li, R., He, D., Menon, P.: A data mining based approach for gear fault diagnostics using vibration sensors. In: American Helicopter Society International Annual Forum, vol. 1, pp. 1609–1616. Fort Worth, TX (2012)
Li, R., Seckiner, S., He, D., Bechhoefer, E., Menon, P.: Gear fault location detection for split torque gearbox using AE sensors. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1308–1317 (2012)
Litt, J., Kurtkaya, M., Duyar, A.: Sensor fault detection and diagnosis simulation of a helicopter engine in an intelligent control framework. Tech. rep., Army Research Laboratory (1994)
Liu, L., Shen, Y., Dowell, E.: Integrated adaptive fault-tolerant H ∞ output feedback control with adaptive fault identification. J. Guid. Control. Dyn. 35(3), 881–889 (2012)
Liu, Z., Chen, Q., Sun, J.: Design and implementation of fault diagnosis expert system for helicopter. In: International Conference on Systems and Informatics, pp. 796–799. Yantai, China (2012)
Loughlin, P., Cakrak, F., Cohen, L.: Conditional moments analysis of transients with application to helicopter fault data. Mech. Syst. Signal Process. 14(4), 511–522 (2000)
Luan, W.L., Chen, F.Y., Hou, R.: A direct adaptive control scheme for a faulty helicopter using the outer loop compensation technique. In: 2nd International Conference on Intelligent Control and Information Processing, vol. 1, pp. 351–354. Harbin, China (2011)
Morel, H., Ouladsine, M., Krysinski, T., Brun-Picard, D.: Defect detection and tracing on helicopter rotors by artificial neural networks. In: IEEE Advanced Process Control Applications for Industry Workshop, Vancouver, Canada (2005)
Noura, H., Theilliol, D., Ponsart, J., Chamssedine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, Dordrecht, Heidelberg, London, New York (2009)
Montes de Oca, S., Puig, V.: Fault-tolerant control using a virtual actuator using LPV techniques: application to a two-degree of freedom helicopter. In: 18th IFAC Symposium on Automatic Control in Aerospace, pp. 416–421. Naraken Shinkokaido, Japan (2010)
Montes de Oca, S., Puig, V.: Realiable fault-tolerant control design for LPV systems using admissible model matching. In: 18th IFAC World Congress, pp. 13735–13740. Milano, Italy (2011)
Montes de Oca, S., Puig, V., Theilliol, D.: Fault-tolerant control design using LPV admissible model matching: application to a two-degree of freedom helicopter. In: 17th Mediterranean Conference on Control and Automation, pp. 522–527. Thessaloniki, Greece (2009)
Montes de Oca, S., Puig, V., Theilliol, D.: Fault-tolerant control design using LPV admissible model matching with H 2/H ∞ performance: application to a two-degree of freedom helicopter. In: Conference on Control and Fault-Tolerant Systems, pp. 251–256. Nice, France (2010)
Montes de Oca, S., Puig, V., Witczak, M.: Fault-tolerant control of a two-degree of freedom helicopter using LPV techniques. In: 16th Mediterranean Conference on Control and Automation, pp. 1204–1209. Ajaccio, France (2008)
Montes de Oca, S., Puig, V., Witczak, M.: Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. Int. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012)
Okuno, Y., Kawachi, K.: Optimal control of helicopters following power failure. J. Guid. Control. Dyn. 17(1), 181–186 (1994)
Ponsart, J., Theilliol, D., Aubrun., C.: Virtual sensors design for active fault tolerant control system applied to a winding machine. Control. Eng. Pract. 18, 1037–1044 (2010)
Qi, J., Han, J.: Application of wavelets transform to fault detection in rotorcraft UAV sensor failure. J. Bionic Eng. 4(4), 265–270 (2007)
Qi, J., Han, J.: Fault adaptive control for RUAV actuator failure with unscented Kalman filter. In: 3rd International Conference on Innovative Computing Information and Control, pp. 169–169. Dalian, China (2008)
Qi, J., Han, J., Wu, Z.: Rotorcraft UAV actuator failure estimation with KF-based adaptive UKF algorithm. In: American Control Conference, Seattle, pp. 1618–1623. Washington, USA (2008)
Qi, J., Han, J., Zhao, X.: Adaptive UKF and its application in fault tolerant control of rotorcraft UAV. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2007)
Qi, J., Jiang, Z., Zhao, X.: UKF-based rotorcraft UAV fault adaptive control for actuator failure. In: IEEE International Conference on Robotics and Biomimetics, pp. 1545–1550. Sanya, China (2007)
Qi, J., Song, D., Dai, L.: Design, implement and testing of a rotorcraft UAV system. In: Aerial Vehicles, chapter 25, pp. 537–554. InTech Open Source (2009)
Qi, J., Song, D., Wu, C.: KF-based adaptive UKF algorithm and its application for rotorcraft UAV actuator failure estimation. Int. J. Adv. Rob. Syst. (online) 9, 1–9 (2012)
Qi, J., Zhao, X., Jiang, Z.: Design and implement of a rotorcraft UAV testbed. In: IEEE International Conference on Robotics and Biomimetics, Kunming, China (2006)
Qi, J., Zhao, X., Jiang, Z.: An adaptive threshold neural-network scheme for rotorcraft UAV sensor failure diagnosis. In: Advances in Neural Networks. Lecture Notes in Computer Science, vol. 4493, pp. 589–596. Springer Berlin Heidelberg (2007)
Qi, X., Theilliol, D., Qi, J., Zhang, Y.M., Han, J.: Fault diagnosis and fault tolerant control methods for manned and unmanned helicopters: a literature review. In: 2nd International Conference on Control and Fault-Tolerant Systems, Nice, France (2013)
Qi, X., Theilliol, D., Qi, J., Zhang, Y.M., Han, J.: A literature review on fault diagnosis methods for manned and unmanned helicopters. In: International Conference on Unmanned Aircratf Systems, Atlanta, GA (2013)
Randall, R.B.: Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Eng. Fail. Anal. 11(2), 177–190 (2004)
Richter, J.: Reconfigurable Control of Nonlinear Dynamical Systems: A Fault-hiding Approach. Lecture Notes in Control and Information Sciences. Springer, New York (2011)
Sadeghzadeh, I., Zhang, Y.M.: A review on fault- tolerant control for unmanned aerial vehicles (UAVs). In: Infotech@Aerospace, St. Louis, MO (2011)
Schwartz, B., Jones, D.: Quadratic and instantaneous frequency analysis of helicopter gearbox faults. Mech. Syst. Sig. Process. 14(4), 579–595 (2000)
Siegel, D., Lee, J., Ly, C.: Methodology and framework for predicting rolling element helicopter bearing failure. In: IEEE Conference on Prognostics and Health Management, pp. 1–9. Denver, Colorado (2011)
Siegel, D., Ly, C., Lee, J.: Methodology and framework for predicting helicopter rolling element bearing failure. IEEE Trans. Reliab. 61(4), 846–857 (2012)
Theilliol, D., Noura, H., Sauter, D.: Fault-tolerant control method for actuator and component faults. In: 37th IEEE Conference on Decision and Control, vol. 1, pp. 604–609. Tampa, FL (1998)
Wang, M., Hu, N.Q., Qin, G.J.: Rule extracting based on MCG with its application in helicopter power train fault diagnosis. In: 9th International Conference on Damage Assessment of Structures. University of Oxford, UK (2011)
Wang, M., Hu, N.Q., Qin, G.J.: A method for rule extraction based on granular computing: application in the fault diagnosis of a helicopter transmission system. J. Intell. Robot. Syst. 11, 445–455 (2012)
Waschburger, R., Paiva, H.M., e Silva, J.J.R.: Fault detection in a laboratory helicopter employing a wavelet-based analytical redundancy approach. In: Conference on Control and Fault-Tolerant Systems, pp. 70–75. Nice, France (2010)
Williams, W.J., Zalubas, E.J.: Helicopter transmission fault detection via time-frequency, scale and spectral methods. Mech. Syst. Signal Process. 14(4), 545–559 (2000)
Wu, B., Saxena, A., Patrick, R., Vachtsevanos, G.: Vibration monitoring for fault diagnosis of helicopter planetry gears. In: 16th IFAC World Congress. Prague, Czech Republic (2005)
Wu, C., Qi, J., Han, J.: AESMF based sensor fault diagnosis for RUAVs. In: 24th Chinese Control and Decision Conference, pp. 3384–3389. Taiyuan, China (2012)
Wu, C., Song, D., Qi, J.: Rotorcraft UAV actuator failure detection based on a new adaptive set-membership filter. In: Su, C.Y., Rakheja, S., Liu, H. (eds.) Intelligent Robotics and Applications. Lecture Notes in Computer Science, vol. 7506, pp. 433–442. Springer Berlin Heidelberg (2012)
Wu, E., Thavamani, S., Zhang, Y.M., Blanke, M.: Sensor fault masking of a ship propulsion. Control. Eng. Pract. 14, 1337–1345 (2006)
Yang, H., Jiang, B., Cocquempot, V.: Fault Tolerant Control Design for Hybrid Systems. Lecture Notes in Control and Information Sciences. Springer, New York (2010)
Zhang, H.: Software Sensors and their Applications in Bioprocess. Springer Berlin Heidelberg (2009)
Zhang, K., B., J., P., S.: Observer-Based Fault Estimation and Accomodation for Dynamic Systems. Springer Berlin Heidelberg (2013)
Zhang, K., Jiang, B., Chen, W.: An improved adaptive fault estimation design for polytopic LPV systems with application to helicopter models. In: 7th Asian Control Conference, Hong Kong, China, pp. 1108–1113 (2009)
Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)
Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)
Zhao, Y., Jhemi, A.A., Chen, R.T.N.: Optimal vertical takeoff and landing helicopter operation in one engine failure. J. Airc. 33(2), 337–346 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qi, X., Qi, J., Theilliol, D. et al. A Review on Fault Diagnosis and Fault Tolerant Control Methods for Single-rotor Aerial Vehicles. J Intell Robot Syst 73, 535–555 (2014). https://doi.org/10.1007/s10846-013-9954-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-013-9954-z