Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Review on Fault Diagnosis and Fault Tolerant Control Methods for Single-rotor Aerial Vehicles

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Faults or failures are inevitable to occur and their prompt detection and isolation are essential for the dependability of various systems and for avoiding damages to the system itself, persons and the environment. Therefore, the safety of helicopter platforms have attracted the attention of many researchers in the past two decades. In order to deal with these problems, this paper presents an overview of the recent development and current researches in the field of fault diagnosis, including analytical/model-based, signal processing-based and knowledge-based techniques, and also passive/active fault- tolerant control approaches. Among various helicopters, single-rotor aerial vehicles, i.e. manned helicopters, unmanned helicopters, two and three degree-of-freedom unmanned helicopter experimental platforms, are considered for providing an overall picture of the fault diagnosis and fault-tolerant control approaches based on the review of journal articles in last two decades, conference articles in last several years and some books.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Carnegie Mellon University: Autonomous helicopter project. http://www.cs.cmu.edu/afs/cs/project/chopper/www (1998). Accessed 30 Aug 2013

  2. National University of Singapore: Lion UAV systems. http://uav.ece.nus.edu.sg/uavfamilies.html (2010). Accessed 30 Aug 2013

  3. Eurocopter: Manned helicopter. http://www.eurocopter.com (2013). Accessed 30 Aug 2013

  4. The National Transportation Safety Board (NTSB) aviation accident database & synopses. http://www.ntsb.gov/aviationquery/index.aspx (2013). Accessed 30 Aug 2013

  5. Afonso, R.J.M., Galvao, R.K.H.: Predictive control of a helicopter model with tolerance to actuator faults. In: Conference on Control and Fault-Tolerant Systems, pp. 744–751, Nice, France (2010)

  6. Alkahe, J., Oshman, Y., Rand, O.: Adaptive estimation methodology for helicopter blade structural damage detection. J. Guid. Control. Dyn. 25(6), 1049–1057 (2002)

    Article  Google Scholar 

  7. Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44, 1859–1866 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Arne, W., Jorgen, A.: Robust fault isolation observers for non-square systems—a parametric approach. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 1275–1280. Mexico City, Mexico (2012)

  9. Bibik, P., Narkiewicz, J.: Helicopter optimal control after power failure using comprehensive dynamic model. J. Guid. Control. Dyn. 35(4), 1354–1362 (2012)

    Article  Google Scholar 

  10. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Fault-diagnosis Systems: an Introduction from Fault Detection to Fault Tolerance. Control Systems Series, Springer-Verlag London (2006)

  11. Cai, G., Chen, B., Kemao, P.: Modeling and control of the yaw channel of a UAV helicopter. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)

    Article  Google Scholar 

  12. Cai, G., Chen, B., Lee, T.: Unmanned Rotorcraft System. Springer London (2011)

  13. Chandhrasekaran, V.K., Eunmi, C.: Fault tolerance system for UAV using hardware in the loop simulation. In: 4th International Conference on New Trends in Information Science and Service Science, pp. 293–300. Gyeongju, South Korea (2010)

  14. Chen, F., Jiang, B., Tao, G.: Fault self-repairing flight control of a small helicopter via fuzzy feedforward and quantum control techniques. Cogn. Comput. 4(4), 543–548 (2012)

    Article  MATH  Google Scholar 

  15. Chen, F., Jiang, B., Tao, G.: A self-repairing control scheme for the helicopter using adaptive sliding model backstepping technology. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 788–793. Mexico City, Mexico (2012)

  16. Chen, J., Patton, R.: Robust Model Based Fault Diagnosis for Dynamic Systems. Kluwer, Boston, MA (1999)

    Book  MATH  Google Scholar 

  17. Chen, Z., Yang, Y.: Fault diagnostics of helicopter gearboxes based on multi-sensor mixtured hidden Markov models. J. Vib. Acoust. 134(3) (2012)

  18. Clothier, R.A., Wu, P.: A review of system safety failure probability objectives for unmanned aircraft systems. In: 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability. Helsinki, Finland (2012)

  19. Delgado, I., Dempsey, P., Simon, D.: A survey of current rotorcraft propulsion health monitoring technologies. In: Internal Report from Glenn Research Center, NASA, USA (2012)

  20. Drozeski, G.R.: A fault-tolerant control architecture for unmanned aerial vehicles. Ph.D. thesis, Georgia Institute of Technology (2005)

  21. Drozeski, G.R., Saha, B., Vachtsevanos, G.J.: A fault detection and reconfigurable control architecture for unmanned aerial vehicles. In: IEEE Aerospace Conference, pp. 1–9. Big Sky, MT, USA (2005)

  22. Ducard, G.J.J.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Advances in Industrial Control Series. Springer, New York (2009)

    Book  Google Scholar 

  23. Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight Control: a Benchmark Challenge. Lecture Notes in Control and Information Sciences. Springer, New York (2010)

    Book  Google Scholar 

  24. Ehinger, R., Fetty, J., Laberge, K.: Planetary gearbox fault detection using vibration separation techniques. Tech. rep., National Aeronautics and Space Administration (2011)

  25. Enns, R., Si, J.: Helicopter flight-control reconfiguration for main rotor actuator failures. J. Guid. Control. Dyn. 26(4), 572–584 (2003)

    Article  Google Scholar 

  26. Firpi, H., Vachtsevanos, G.: Genetically programmed-based artificial features extraction applied to fault detection. Eng. Appl. Artif. Intell. 21(4), 558–568 (2008)

    Article  Google Scholar 

  27. Ganguli, R., Chopra, I., Haas, D.J.: Detection of helicopter rotor system simulated faults using neural networks. J. Am. Helicopter Soc. 42(2), 161–171 (1997)

    Article  Google Scholar 

  28. Ganguli, R., Chopra, I., Haas, D.J.: Helicopter rotor system fault detection using physics-based model and neural networks. AIAA J. 36(6), 1078–1086 (1998)

    Article  Google Scholar 

  29. Garcia, R.D., Brown, A.: Control and limitations of navigating a tail rotor/actuator failed unmanned helicopter. J. Intell. Robot. Syst. 61(1–4), 5–13 (2011)

    Article  Google Scholar 

  30. Garcia, R.D., Valavanis, K.P., Kandel, A.: Autonomous helicopter navigation during a tail rotor failure utilizing fuzzy logic. In: IEEE Mediterranean Conference on Control and Automation, pp. 1–6. Athens, Greece (2007)

  31. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker Incorporated, New York (1988)

    Google Scholar 

  32. Girondin, V., Morel, H., Cassar, J.: Vibration-based fault detection of sharp bearing faults in helicopters. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 180–185. Mexico City, Mexico (2012)

  33. Harkegard, O., Glad, S.: Resolving actuator redundancy-optimal control vs. control allocation. Automatica 41, 137–144 (2004)

    MathSciNet  Google Scholar 

  34. Hassan, M.A., Coats, D., Shin, Y.: Bicoherence analysis for condition assessment of multi-faulted helicopter drivetrain systems. In: American Helicopter Society International Annual Forum, vol. 1, pp. 2326–2331. Fort Worth, TX (2012)

  35. Heredia, G., Caballero, F., Maza, I.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009)

    Article  Google Scholar 

  36. Heredia, G., Ollero, A.: Sensor fault detection in small autonomous helicopters using observer/Kalman filter identification. In: IEEE International Conference on Mechatronics, pp. 1–6. Malaga, Spain (2009)

  37. Heredia, G., Ollero, A.: Detection of sensor faults in small helicopter UAVs using observer/Kalman filter identification. Math. Probl. Eng. (online) 2011, 20 pages (2011)

  38. Heredia, G., Ollero, A., Bejar, M.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2), 90–99 (2008)

    Article  Google Scholar 

  39. Heredia, G., Ollero, A., Mahtani, R.: Detection of sensor faults in autonomous helicopters. In: IEEE International Conference on Robotics and Automation, pp. 2229–2234. Barcelona, Spain (2005)

  40. Heredia, G., Remu, B., Ollero, A.: Actuator fault detection in autonomous helicopters. In: 5th IFAC Symposium on Intelligent Autonomous Vehicles, pp. 1–6. Lisbon, Portugal (2004)

  41. Hood, A., Pines, D.: Sun gear fault detection on an OH-58C helicopter transmission. In: American Helicopter Society International Annual Forum, vol. 3, pp. 1664–1690. Virginia Beach, VA (2011)

  42. Isermann, R.: Fault-diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin, Germany (2006)

    Google Scholar 

  43. Jiang, B., Chowdhury, F.N.: Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans. Control Syst. Technol. 13(3), 493–499 (2005)

    Article  Google Scholar 

  44. Johansen, T.A., Fossen, T.I.: Control allocation—a survey. Automatica 49(5), 1087–1103 (2013)

    Article  MathSciNet  Google Scholar 

  45. Johnson, E., Schrage, D.: The Georgia Tech unmanned aerial research vehicle: GTMax. In: AIAA Guidance, Navigation, and Control Conference, Austin, TX (2003)

  46. Johnson, W.: Helicopter Theory. Dover, New York (1980)

    Google Scholar 

  47. Kaliappan, V.K., Young, H., Budiyono, A.: Fault tolerant controller design for component faults of a small scale unmanned aerial vehicle. In: 8th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 79–84. Incheon, Korea (2011)

  48. Kapoor, D., Deb, D., Sahai, A.: Adaptive failure compensation for coaxial rotor helicopter under propeller failure. In: American Control Conference, pp. 2539–2544. Montreal, Canada (2012)

  49. Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W.: Fault Diagnostics Models, Artificial Intelligence, Applications. Springer, Berlin, Germany (2004)

    Google Scholar 

  50. Kuo, T., Huang, H.: Expert system application for helicopter fault diagnosis. International Journal of Digital Content Technology and its Applications 6(22), 704–712 (2012)

    Article  MathSciNet  Google Scholar 

  51. Li, R., He, D., Menon, P.: A data mining based approach for gear fault diagnostics using vibration sensors. In: American Helicopter Society International Annual Forum, vol. 1, pp. 1609–1616. Fort Worth, TX (2012)

  52. Li, R., Seckiner, S., He, D., Bechhoefer, E., Menon, P.: Gear fault location detection for split torque gearbox using AE sensors. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1308–1317 (2012)

    Article  Google Scholar 

  53. Litt, J., Kurtkaya, M., Duyar, A.: Sensor fault detection and diagnosis simulation of a helicopter engine in an intelligent control framework. Tech. rep., Army Research Laboratory (1994)

  54. Liu, L., Shen, Y., Dowell, E.: Integrated adaptive fault-tolerant H  ∞  output feedback control with adaptive fault identification. J. Guid. Control. Dyn. 35(3), 881–889 (2012)

    Article  Google Scholar 

  55. Liu, Z., Chen, Q., Sun, J.: Design and implementation of fault diagnosis expert system for helicopter. In: International Conference on Systems and Informatics, pp. 796–799. Yantai, China (2012)

  56. Loughlin, P., Cakrak, F., Cohen, L.: Conditional moments analysis of transients with application to helicopter fault data. Mech. Syst. Signal Process. 14(4), 511–522 (2000)

    Article  Google Scholar 

  57. Luan, W.L., Chen, F.Y., Hou, R.: A direct adaptive control scheme for a faulty helicopter using the outer loop compensation technique. In: 2nd International Conference on Intelligent Control and Information Processing, vol. 1, pp. 351–354. Harbin, China (2011)

  58. Morel, H., Ouladsine, M., Krysinski, T., Brun-Picard, D.: Defect detection and tracing on helicopter rotors by artificial neural networks. In: IEEE Advanced Process Control Applications for Industry Workshop, Vancouver, Canada (2005)

  59. Noura, H., Theilliol, D., Ponsart, J., Chamssedine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, Dordrecht, Heidelberg, London, New York (2009)

    Book  Google Scholar 

  60. Montes de Oca, S., Puig, V.: Fault-tolerant control using a virtual actuator using LPV techniques: application to a two-degree of freedom helicopter. In: 18th IFAC Symposium on Automatic Control in Aerospace, pp. 416–421. Naraken Shinkokaido, Japan (2010)

  61. Montes de Oca, S., Puig, V.: Realiable fault-tolerant control design for LPV systems using admissible model matching. In: 18th IFAC World Congress, pp. 13735–13740. Milano, Italy (2011)

  62. Montes de Oca, S., Puig, V., Theilliol, D.: Fault-tolerant control design using LPV admissible model matching: application to a two-degree of freedom helicopter. In: 17th Mediterranean Conference on Control and Automation, pp. 522–527. Thessaloniki, Greece (2009)

  63. Montes de Oca, S., Puig, V., Theilliol, D.: Fault-tolerant control design using LPV admissible model matching with H 2/H  ∞  performance: application to a two-degree of freedom helicopter. In: Conference on Control and Fault-Tolerant Systems, pp. 251–256. Nice, France (2010)

  64. Montes de Oca, S., Puig, V., Witczak, M.: Fault-tolerant control of a two-degree of freedom helicopter using LPV techniques. In: 16th Mediterranean Conference on Control and Automation, pp. 1204–1209. Ajaccio, France (2008)

  65. Montes de Oca, S., Puig, V., Witczak, M.: Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. Int. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012)

    MATH  MathSciNet  Google Scholar 

  66. Okuno, Y., Kawachi, K.: Optimal control of helicopters following power failure. J. Guid. Control. Dyn. 17(1), 181–186 (1994)

    Article  Google Scholar 

  67. Ponsart, J., Theilliol, D., Aubrun., C.: Virtual sensors design for active fault tolerant control system applied to a winding machine. Control. Eng. Pract. 18, 1037–1044 (2010)

    Article  Google Scholar 

  68. Qi, J., Han, J.: Application of wavelets transform to fault detection in rotorcraft UAV sensor failure. J. Bionic Eng. 4(4), 265–270 (2007)

    Article  Google Scholar 

  69. Qi, J., Han, J.: Fault adaptive control for RUAV actuator failure with unscented Kalman filter. In: 3rd International Conference on Innovative Computing Information and Control, pp. 169–169. Dalian, China (2008)

  70. Qi, J., Han, J., Wu, Z.: Rotorcraft UAV actuator failure estimation with KF-based adaptive UKF algorithm. In: American Control Conference, Seattle, pp. 1618–1623. Washington, USA (2008)

  71. Qi, J., Han, J., Zhao, X.: Adaptive UKF and its application in fault tolerant control of rotorcraft UAV. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2007)

  72. Qi, J., Jiang, Z., Zhao, X.: UKF-based rotorcraft UAV fault adaptive control for actuator failure. In: IEEE International Conference on Robotics and Biomimetics, pp. 1545–1550. Sanya, China (2007)

  73. Qi, J., Song, D., Dai, L.: Design, implement and testing of a rotorcraft UAV system. In: Aerial Vehicles, chapter 25, pp. 537–554. InTech Open Source (2009)

  74. Qi, J., Song, D., Wu, C.: KF-based adaptive UKF algorithm and its application for rotorcraft UAV actuator failure estimation. Int. J. Adv. Rob. Syst. (online) 9, 1–9 (2012)

    Google Scholar 

  75. Qi, J., Zhao, X., Jiang, Z.: Design and implement of a rotorcraft UAV testbed. In: IEEE International Conference on Robotics and Biomimetics, Kunming, China (2006)

  76. Qi, J., Zhao, X., Jiang, Z.: An adaptive threshold neural-network scheme for rotorcraft UAV sensor failure diagnosis. In: Advances in Neural Networks. Lecture Notes in Computer Science, vol. 4493, pp. 589–596. Springer Berlin Heidelberg (2007)

  77. Qi, X., Theilliol, D., Qi, J., Zhang, Y.M., Han, J.: Fault diagnosis and fault tolerant control methods for manned and unmanned helicopters: a literature review. In: 2nd International Conference on Control and Fault-Tolerant Systems, Nice, France (2013)

  78. Qi, X., Theilliol, D., Qi, J., Zhang, Y.M., Han, J.: A literature review on fault diagnosis methods for manned and unmanned helicopters. In: International Conference on Unmanned Aircratf Systems, Atlanta, GA (2013)

  79. Randall, R.B.: Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Eng. Fail. Anal. 11(2), 177–190 (2004)

    Article  MathSciNet  Google Scholar 

  80. Richter, J.: Reconfigurable Control of Nonlinear Dynamical Systems: A Fault-hiding Approach. Lecture Notes in Control and Information Sciences. Springer, New York (2011)

    Book  Google Scholar 

  81. Sadeghzadeh, I., Zhang, Y.M.: A review on fault- tolerant control for unmanned aerial vehicles (UAVs). In: Infotech@Aerospace, St. Louis, MO (2011)

  82. Schwartz, B., Jones, D.: Quadratic and instantaneous frequency analysis of helicopter gearbox faults. Mech. Syst. Sig. Process. 14(4), 579–595 (2000)

    Article  Google Scholar 

  83. Siegel, D., Lee, J., Ly, C.: Methodology and framework for predicting rolling element helicopter bearing failure. In: IEEE Conference on Prognostics and Health Management, pp. 1–9. Denver, Colorado (2011)

  84. Siegel, D., Ly, C., Lee, J.: Methodology and framework for predicting helicopter rolling element bearing failure. IEEE Trans. Reliab. 61(4), 846–857 (2012)

    Article  Google Scholar 

  85. Theilliol, D., Noura, H., Sauter, D.: Fault-tolerant control method for actuator and component faults. In: 37th IEEE Conference on Decision and Control, vol. 1, pp. 604–609. Tampa, FL (1998)

  86. Wang, M., Hu, N.Q., Qin, G.J.: Rule extracting based on MCG with its application in helicopter power train fault diagnosis. In: 9th International Conference on Damage Assessment of Structures. University of Oxford, UK (2011)

  87. Wang, M., Hu, N.Q., Qin, G.J.: A method for rule extraction based on granular computing: application in the fault diagnosis of a helicopter transmission system. J. Intell. Robot. Syst. 11, 445–455 (2012)

    Google Scholar 

  88. Waschburger, R., Paiva, H.M., e Silva, J.J.R.: Fault detection in a laboratory helicopter employing a wavelet-based analytical redundancy approach. In: Conference on Control and Fault-Tolerant Systems, pp. 70–75. Nice, France (2010)

  89. Williams, W.J., Zalubas, E.J.: Helicopter transmission fault detection via time-frequency, scale and spectral methods. Mech. Syst. Signal Process. 14(4), 545–559 (2000)

    Article  Google Scholar 

  90. Wu, B., Saxena, A., Patrick, R., Vachtsevanos, G.: Vibration monitoring for fault diagnosis of helicopter planetry gears. In: 16th IFAC World Congress. Prague, Czech Republic (2005)

  91. Wu, C., Qi, J., Han, J.: AESMF based sensor fault diagnosis for RUAVs. In: 24th Chinese Control and Decision Conference, pp. 3384–3389. Taiyuan, China (2012)

  92. Wu, C., Song, D., Qi, J.: Rotorcraft UAV actuator failure detection based on a new adaptive set-membership filter. In: Su, C.Y., Rakheja, S., Liu, H. (eds.) Intelligent Robotics and Applications. Lecture Notes in Computer Science, vol. 7506, pp. 433–442. Springer Berlin Heidelberg (2012)

  93. Wu, E., Thavamani, S., Zhang, Y.M., Blanke, M.: Sensor fault masking of a ship propulsion. Control. Eng. Pract. 14, 1337–1345 (2006)

    Article  Google Scholar 

  94. Yang, H., Jiang, B., Cocquempot, V.: Fault Tolerant Control Design for Hybrid Systems. Lecture Notes in Control and Information Sciences. Springer, New York (2010)

    Book  Google Scholar 

  95. Zhang, H.: Software Sensors and their Applications in Bioprocess. Springer Berlin Heidelberg (2009)

    Google Scholar 

  96. Zhang, K., B., J., P., S.: Observer-Based Fault Estimation and Accomodation for Dynamic Systems. Springer Berlin Heidelberg (2013)

    Book  Google Scholar 

  97. Zhang, K., Jiang, B., Chen, W.: An improved adaptive fault estimation design for polytopic LPV systems with application to helicopter models. In: 7th Asian Control Conference, Hong Kong, China, pp. 1108–1113 (2009)

  98. Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)

    Article  Google Scholar 

  99. Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  100. Zhao, Y., Jhemi, A.A., Chen, R.T.N.: Optimal vertical takeoff and landing helicopter operation in one engine failure. J. Airc. 33(2), 337–346 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntong Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, X., Qi, J., Theilliol, D. et al. A Review on Fault Diagnosis and Fault Tolerant Control Methods for Single-rotor Aerial Vehicles. J Intell Robot Syst 73, 535–555 (2014). https://doi.org/10.1007/s10846-013-9954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9954-z

Keywords