Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Jacobian Matrix Normalization - A Comparison of Different Approaches in the Context of Multi-Objective Optimization of 6-DOF Haptic Devices

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper focuses on Jacobian matrix normalization and the performance effects of using different criterion and techniques. Normalization of the Jacobian matrix becomes an issue when using kinematic performance indices and the matrix contains elements with non-homogenous physical units, i.e. representing both translational and rotational motions. Normalization is necessary in multi objective optimization if kinematic performance indices are used based on the full Jacobian matrix. Different methods have been proposed in literature for defining a scaling factor used to normalize the Jacobian. Based on a comparison of a few of these methods, we conclude that it is better to have the scaling factor as a design variable in the multi objective optimization. However, as an alternative, a new scaling factor is proposed based on the relationship between linear actuator motion range in joint space and rotational end effector motion in task space, a proposal underpinned by simulation, analysis and comparison of optimization results using existing normalization techniques. For optimization, performance indices for workspace, kinematic sensitivity, device isotropy and inertia are considered. To deal with the multi-objective optimization problem, genetic algorithms are employed together with a normalized multi-objective optimization function. The performances of different device configurations (depending on the normalization method and the global isotropy index used) are presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hannaford, B., Okamura, A.M.: Advances in Haptics – overview of haptics, pp. 719-739. Intech. ISBN 978-953-307-093-3 (2010)

  2. Merlet, J.P.: Jacobian, manipulability, condition number, and accuracy of parallel robots. ASME J. Mech. Des. 128(1), 199–206

  3. Lipkin, H., Duffy, J.: Hybrid twist and wrench control for a robotic manipulator. Trans. ASME J. Mech. Trans. Auto. Des. V(110), 138–144 (1988)

    Article  Google Scholar 

  4. Gosselin, C.: Dexterity indices for planar and spatial robotic manipulators. In: Proc. IEEE Int. Conf. Robotics Auto. (Cincinnati, Ohio), pp. 650–655 (1990)

  5. Kim, S.-G., Ryu, J.: New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators. IEEE Trans. Robot. Autom. 19 (4), 731–737 (2003)

    Article  Google Scholar 

  6. Tandridge, M., Angeles, J., Ranjbaran, F.: The characteristic point and the characteristic length of robotics manipulators. In: Proc. ASME 22nd Biennial Conf. Robot. Spatial Mech. Syst. (1992)

  7. Ma, O., Angeles, J.: Optimum architecture design of platform manipulators. In: Proc. IEEE International Conference of Advance Robot. (1991)

  8. Angeles, J.: Kinematic isotropy in humans and machines. In: Proc. IFToMM 9th World Cong. Theory of Mach. & Mech., (Milano, Italia), vol. 1, pp. XLII–XLIX (1995)

  9. Stocco, L. J., Salcudean, S.E., Sassani, F.: Matrix normalization for optimal robot design. In: IEEE International Conference on Robotics and Automation. Leuven (1998)

  10. Lee, J.H., Eom, K.S., Yi, B.J., Suh, I.H.: Design of a new-6 DOF parallel haptic device. In: Proceedings of the IEEE International Conference on Robotics & Automation. Seoul (2001)

  11. Cardou, P., Bouchard, S., Gosselin, C.: Kinematic-sensitivity indices for dimensionally nonhomogeneous Jacobian matrices. IEEE Trans. Robot. 26(1), 166–173 (2010)

    Article  Google Scholar 

  12. Salisbury, J. K., Craig, J.J.: 2 articulated hands: Force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  13. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(4), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  14. Legnani, G., Tosi, D., Fassi, I., Giberti, H., Cinquemani, S.: The point isotropy and other properties of serial and parallel manipulators. Mech. Mach. Theory 45, 1407–1423 (2010)

    Article  MATH  Google Scholar 

  15. Gosselin, C., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. ASME J. Mech. Des. 113(5), 220–226 (1991)

    Article  Google Scholar 

  16. Krefft, M., Hesselbach, J.: Elastodynamic optimization of parallel kinematics. IEEE Int. Conf. Autom. Sci. Eng., 357–362 (2005)

  17. Stocco, L., Salcudean, S.E., Sassani, F.: Fast constrained global min-max optimization of robot parameters. Robotica 16(7), 595–605 (1998)

    Article  Google Scholar 

  18. Arata, J., Kondo, H., Ikedo, N., Fujimoto, H.: Haptic device using a newly developed redundant parallel mechanism. IEEE Trans. Robot. 27(2), 201–214 (2011)

    Article  Google Scholar 

  19. Merlet, J.-P., Daney, D.: Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace. In: IEEE International Conference on Robotics and Automation. Barcelona (2005)

  20. Konak, A, Coit, D. W., Smith, A. E.: Multi-objective optimization using genetic algorithms: A tutorial. J. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)

    Article  Google Scholar 

  21. Tarkian, M., Ölvander, J., Person, J.J., Feng, X.: Multidisciplinary design optimization of modular industrial robots. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE. Washington, DC (2011)

  22. Raza, R., Caro, S., Chablat, D., Wenger, P.: Multi-objective path placement optimization of parallel kinematics machine based on energy consumption, shaking forces and maximum actuator torques: Application to the orthoglide. Mech. Mach. Theory 45, 1125–1141 (2010)

    Article  MATH  Google Scholar 

  23. Khorshidi, M., Soheilypour, M., Peyro, M., Atai, A., Shariat Panahi, M.: Optimal design of four-bar mechanisms using a hybrid multi-objective GA with adaptive local search. Mech. Mach. Theory. Online available on 1 July (2011)

  24. Kim, J.-P., Ryu, J.: Closed-form dynamics equations of 6-DOF PUS type parallel manipulators. In: ASME Design Technical Conferences, 26th Biennial Mechanisms Conference. Baltimore (2000)

  25. Merlet, J.-P.: Designing a parallel manipulator for a specific workspace. Int. J. Robot. Res. 16(4), 545–556 (1997)

    Article  Google Scholar 

  26. Ma, O., Angeles, J. (1991)

  27. Jiang, H.-z., He, J.-f., Tong, Z.-z., Wang, W.: Dynamic isotropic design for modified Gough–Stewart platforms lying on a pair of circular hyperboloids. Mech. Mach. Theory 46(9), 1301–1315 (2011)

    Article  MATH  Google Scholar 

  28. Stocco, L.J., Salcudean, S.E., Sassani, F.: Optimal kinematic design of a haptic pen. IEEE/ASME Trans. Mechatron. 6(3), 210–220 (2000)

    Article  Google Scholar 

  29. Hopkins, B.R., Williams II, R.L.: Kinematics, design and control of the 6-PSU platform. Indu. Robot: Int. J. 29(5), 443–451 (2002)

    Article  Google Scholar 

  30. Hao, F., Merlet, J.-P.: Multi-criteria optimal design of parallel manipulators based on interval analysis. Mech. Mach. Theory 40, 157–171 (2005)

    Article  MATH  Google Scholar 

  31. Khan, S., Andersson, K., Wikander, J.: Dynamic based control strategy of the haptic device at IEEE WorldHaptics International Conference. Istanbul (2011)

  32. Poles, S.: Bench-marking MOGA-II. Technical report 2004-001, ESTECO Trieste. http://www.esteco.com (2003)

  33. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. In: 3rd revised and extended addition. Springer. ISBN-10: 3540606769 (1998)

  34. Murata, T., Ishibuchi, H.: MOGA: multi-objective genetic algorithms. In: Proceedings of the 1995 IEEE International Conference on Evolutionary Computation. Australia (1995)

  35. Marcerrio, M.: Singularity detection and avoidance in the ARES haptic device, Master thesis at the division of mechatronics at the royal institute of technology-KTH (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Andersson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Andersson, K. & Wikander, J. Jacobian Matrix Normalization - A Comparison of Different Approaches in the Context of Multi-Objective Optimization of 6-DOF Haptic Devices. J Intell Robot Syst 79, 87–100 (2015). https://doi.org/10.1007/s10846-014-0147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0147-1

Keywords