Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design and Implementation of Robust-Fixed Structure Controller for Telerobotic Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The controller design for bilateral teleoperation systems involves a delicate trade-off between performance and stability. To achieve high performance, high order robust controllers may not be feasible for real-time implementation because of hardware and computational limitations. The main purpose of this paper is to achieve stability and transparency in the presence of time delay in communication channel as well as model uncertainty. To address these problems, a novel robust fixed-structure controller is proposed for uncertain bilateral teleoperation systems. Here, the traditional conventional Proportional-Integral-Derivative (PID) controller is employed to achieve the requirements. The simplicity and straightforward design are the significant advantageous of the proposed method. Robust stability analysis of the proposed technique is also provided. Results demonstrate that the structure is effective in providing stability and transparency in teleoperation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Melchiorri, C., Eusebi, A.: Telemanipulation: system aspects and control issue. In: Proc. of the Modeling and Control of Mechanisms and Robots, World Scientific, Singapore, pp 149–183 (1996)

  2. Ryu, J.H., Kim, J.H.: Stable and high performance telerobotic with time domain passivity control: reference energy following scheme. In: Proc. of IEEE Conf. on Control Applications, pp 782–787 (2005)

  3. Smith, A., Hashtrudi-Zaad, K.: Smith predictor type control architectures for time delayed teleoperation. Int. J. Robot. Res. 25, 797–818 (2006)

    Article  Google Scholar 

  4. Shokri-Ghaleh, H., Alfi, A.: Optimal synchronization of teleoperation systems via Cuckoo optimization algorithm. Nonlinear Dyn. 78(4), 2359–2376 (2014)

    Article  MathSciNet  Google Scholar 

  5. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9, 624–637 (1993)

    Article  Google Scholar 

  6. Yokokohji, Y., Yoshikawa, T.: Bilateral control of master-slave manipulators for ideal kinesthetic coupling: formulation and experiment. IEEE Trans. Robot. Autom. 10(5), 605–620 (1994)

    Article  Google Scholar 

  7. Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006)

    Article  Google Scholar 

  8. Ching, H., Book, W.J.: Internet-based bilateral teleoperation based on wave variable with adaptive predictor and direct drift control. J. Dyn. Syst., Meas., Control 128, 86–93 (2006)

    Article  Google Scholar 

  9. Kim, B.Y., Ahn, H.S.: A design of bilateral teleoperation systems using composite adaptive controller. Control Eng. Pract. 21(12), 1641–1652 (2013)

    Article  Google Scholar 

  10. Alfi, A., Farrokhi, M.: A simple structure for bilateral transparent teleoperation systems with time delay. ASME J. Dyn. Syst. Meas. Control 130(4), 044502 (2008). doi:10.1115/1.2936854

    Article  Google Scholar 

  11. Alfi, A., Farrokhi, M.: Force reflecting bilateral control of master-slave systems in teleoperation. J. Intel. Robot. Syst. 52(2), 209–232 (2008)

    Article  Google Scholar 

  12. Alfi, A., Khosravi, A., Lari, A.: Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via µ synthesis. IMA J. Math. Control Inf. 31, 111–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moreau, R., Pham, M.T., Tavakoli, M., Le, M.Q., Redarce, T.: sSliding-mode bilateral teleoperation control design for master–slave pneumatic servo systems. Control Eng. Pract. 20(6), 584–597 (2012)

    Article  Google Scholar 

  14. Park, S., Seo, C., Kim, J.P., Ryu, J.: Robustly stable rate-mode bilateral teleoperation using an energy-bounding approach. Mechatronics 21(1), 176–184 (2011)

    Article  Google Scholar 

  15. Yang, X., Hua, C., Yan, J., Guan, X.: New stability criteria for networked teleoperation system. Inf. Sci. 233(1), 244–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, G.S., Mukhopadhyay, S.C., Messom, C.H., Demidenko, S.N.: Master-slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing. IEEE Trans. Instrum. Meas. 55 (6), 2136–2145 (2006)

    Article  Google Scholar 

  18. Al-Mouhamed, M.A., Nazeeruddin, M., Merah, N.: Design and instrumentation of force feedback in telerobotics. IEEE Trans. Instrum. Meas. 58(6), 1949–1957 (2009)

    Article  Google Scholar 

  19. Salcudean, S.E., Zhu, M., Zhu, W.H., Hashtrudi-Zaad, K.: Transparent bilateral teleoperation under position and rate control. Int. J. Robot. Res. 19, 1185–1202 (2000)

    Article  Google Scholar 

  20. Ni, L., Wang, D.W.L.: A gain-switching control scheme for position-error-based force reflecting teleoperation. In: proc. of IEEE Sym. Haptic Interfaces for Virtual and Teleoperator Systems, pp 239–246 (2002)

  21. Kim, J., Chang, P.R., Park, H.S.: Transparent teleoperation using two-channel control architectures. In: proc. of IEEE/RSJ Int. Conf. Intelligent and Robots and System, pp 1953–1960 (2005)

  22. Haddadi, A., Hashtrudi-Zaad, K.: A new robust stability analysis and design tool for bilateral teleoperation control systems. In: proc. of IEEE Int. Conf. Robotics and Automation, pp 663–670 (2008)

  23. García-Valdovinos, L.G., Parra-Vega, V., Artega, M.A.: Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay. Robot. Auton. Syst. 55(8), 609–617 (2007)

    Article  Google Scholar 

  24. Arcara, P., Melchiorri, C.: Control schemes for teleoperation with time delay: a comparative study. Robot. Auton. Syst. 38, 49–64 (2002)

    Article  MATH  Google Scholar 

  25. Aracil, R., Azorin, J.M., Ferre, M., Pena, C.: Bilateral control by state convergence based on transparency for systems with time delay. Robot. Auton. Syst. 61, 86–94 (2013)

    Article  Google Scholar 

  26. Namerikawa, T., Kawada, H.: Symmetric impedance matched teleoperation with position tracking. In: Proc. IEEE Conf. Decision Control, pp 4496–4501 (2006)

  27. Azorín, J.M., Reinoso, O., Aracil, R., Ferre, M.: Control of teleoperators with communication time delay through state convergence. Robot. Syst. 21, 167–182 (2004)

    Article  MATH  Google Scholar 

  28. Ueda, J., Yoshikawa, T.: Force-reflecting bilateral teleoperation with time delay by signal filtering. IEEE Trans. Robot. Autom. 20(3), 613–619 (2004)

    Article  Google Scholar 

  29. Nuno, E., Ortega, R., Barabanov, N., Basanez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  30. Hosseini-Suny, K., Momeni, H., Janabi-Sharifi, F.: A modified adaptive controller design for teleoperation systems. Robot. Auton. Syst. 58, 676–683 (2010)

    Article  MATH  Google Scholar 

  31. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Automatic Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  32. Anderson, R.J., Spong, M.W.: Asymptotic stability of force reflecting teleoperators with time delay. Int. J. Robot. Res. 11(2), 135–149 (1992)

    Article  Google Scholar 

  33. Kosuge, K., Murayama, H., Takeo, K.: Bilateral feedback control of telemanipulators via computer network. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots Syst., pp 1380–1385 (1996)

  34. Park, J.H., Cho, H.C.: Sliding mode control of bilateral teleoperation systems with force-reflection on the Internet. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems, pp 1187–1192 (2000)

  35. Munir, S., Book, W.J.: Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002)

    Article  Google Scholar 

  36. Niemeyer, G., Slotine, J.J.E.: Telemanipulation with time delays. Int. J. Robot. Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  37. He, X., Chen, Y.: Six-degree-of-freedom haptic rendering in virtual teleoperation. IEEE Trans. Instrum. Meas. 57(9), 1866–1875 (2008)

    Article  Google Scholar 

  38. Alise, M., Roberts, R.G., Repperger, D.W., Moore, C.A., Tosunoglu, S.: On extending the wave variable method to multiple-DOF teleoperation systems. IEEE/ASME Trans. Mechatron. 14(1), 55–63 (2009)

    Article  Google Scholar 

  39. Yongqiang, Y., Liu, P.X.: Improving haptic feedback fidelity in wave variable-based teleoperation orientated to telemedical applications. IEEE Trans. Instrum. Meas. 58(8), 2847–2855 (2009)

    Article  Google Scholar 

  40. Hua, C.C., Yang, Y., Guan, X.: Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay. Neurocomputing 113, 204–212 (2013)

    Article  Google Scholar 

  41. Ghoushkhanehee, S.V., Alfi, A.: Model predictive control of transparent bilateral teleoperation systems under uncertain communication time-delay, Proc. 9th Asian Control Conf., 1–6 (2013)

  42. Khosravi, A., Alfi, A., Roshandel, A.: Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach. J. AI and Data Mining 1(2), 75–87 (2013)

    Google Scholar 

  43. Alfi, A., Shokrzadeh, A., Asadi, M.: Reliability analysis of H-infinity control for a container ship in way-point tracking control. Appl. Ocean Res. 52, 309–316 (2015)

    Article  Google Scholar 

  44. Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle IEEE Trans. Neural Netw. Learn. Syst., doi:10.1109/TNNLS.2015.2456972

  45. Xu, B., Shi, Z., Yang, C., Sun, F.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybern. 44(12), 2626–2634 (2014)

    Article  Google Scholar 

  46. Xu, B., Yang, C., Shi, Z.: Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 635–641 (2014)

    Article  Google Scholar 

  47. Hu, Z., Saculdean, S.E., Loewen, P.D.: Robust controller design for teleoperation systems. In: Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 3, pp 2127–2132 (1995)

  48. Gary, M.H., Leung, Francis, B.A., Apkarian, J.: Bilateral controller for teleoperators with time delay via µ-synthesis. IEEE Trans. Robot. Automat. 11(1), 105–116 (1995)

    Article  Google Scholar 

  49. Yan, J., Saculdean, S.E.: Teleoperation controller design using H8 optimization with application to motion scaling. IEEE Trans. Contr. Sys. Tec. 4(3), 244–258 (1996)

    Article  Google Scholar 

  50. Boukhnifer, M., Ferreira, A.: Scaled teleleoperation controller design for micromanipulation over internet. In: Proc. IEEE Int. Conf. Syst. Autom., New-Orleans, pp 4577–4583 (2004)

  51. Boukhnifer, M., Ferreira, A.: H2 optimal controller design for micro-teleoperation with delay (2004)

  52. Shahdi, A., Sirouspour, S.: Adaptive/robust control for time-delay teleoperation. IEEE Trans. Robot. 25(1), 196–205 (2009)

    Article  Google Scholar 

  53. Sha-Sadeghi, M., Momeni, H.R., Amirifar, R.: H8 and L1 control of a teleoperation system via LMIs. Appl. Math. Comput. 206, 669–677 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Smith, O.: Closer control of loops with dead time. Chem. Eng. Prog. 53(5), 217–219 (1957)

    Google Scholar 

  55. Yamanaka, K., Shimemura, E.: Effects of mismatched Smith controller on stability systems with time-delay. Automatica 23(6), 787–791 (1987)

    Article  MATH  Google Scholar 

  56. Veeramachaneni, S.R., Watkins, J.M., Emami, T.: Robust stabilization of time-delay systems using PID controller with a Smith predictor. In: Proc. Int. Conf. Control Appl., pp 796–801 (2013)

  57. Skogestad, S., Postlethwaite, I.: Multivariable feedback control: analysis and design, Second. John Wiley & Sons (2001)

  58. Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Alfi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ZIP 3.82 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfi, A., Bakhshi, A., Yousefi, M. et al. Design and Implementation of Robust-Fixed Structure Controller for Telerobotic Systems. J Intell Robot Syst 83, 253–269 (2016). https://doi.org/10.1007/s10846-016-0335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0335-2

Keywords