Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blackboard Architecture for Detecting and Notifying Failures for Component-Based Unmanned Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes the blackboard architecture that is capable of detecting the component failures/recoveries in the component-based unmanned systems and notifying them to the associated components. The blackboard architecture monitors each component of the system in order to detect its failures/recoveries at runtime and identify the causes of failures. Using the dependency relationships between components, the blackboard architecture performs impact analysis so that it determines the scope of failure/recovery notification in the components of the system. The notification messages delivered to the components can trigger safety actions against the failures. The prototypes of blackboard architecture have been developed for Microsoft Robotics Developer Studio (MSRDS) based unmanned systems and Robot Operating System (ROS) based unmanned systems. The prototypes are used to validate the blackboard architecture with an unmanned ground vehicle (UGV) system and a patrolling robot system as case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-Wesley Inc., Boston, Reading (2000)

    Google Scholar 

  2. Pfleeger, S.L., Atlee, J.M.: Software engineering theory and practice, 3rd edn. Prentice-Hall, Englewood Cliffs (2006)

    Google Scholar 

  3. Crnkovic, I.: Component-Based Approach for Embedded Systems. IEEE Press, New York (2004)

    Google Scholar 

  4. Brugali, D., Scandurra, P.: Component-based robotic engineering. IEEE Robot. Autom. Mag. 16(4), 84–96 (2009)

    Article  Google Scholar 

  5. Jackson, J.: Microsoft robotics studio: a technical introduction. IEEE Robot. Autom. Mag. 14(4), 82–87 (2007)

    Article  Google Scholar 

  6. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan (2009)

  7. OMG, The robot technology component specification, available at: http://www.omg.org/spec/RTC/1.1/PDF/formal-12-09-01.pdf (2012)

  8. Soetens, P.: The OROCOS (Open Robot Control Software) Component Builder’s Manual Version 1.10.2 (2007)

  9. Enderle, S., Utz, H., Sablatnog, S., Simon, S., Kraetzschmar, G., Palm, G.: MIRO: middleware for autonomous mobile robots. In: Telematics Applications in Automation and Robotics (2001)

  10. Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.: Miro-middleware for mobile robot application. IEEE Trans. Robot. Autom. 18(4), 493–497 (2002)

    Article  MATH  Google Scholar 

  11. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T.: RT-middleware: distributed component middleware for RT. In: IEEE/RSJ International Conference on Robots and Intelligent Systems, pp. 3555–3560 (2005)

  12. Song, B., Jung, S., Jang, C., Kim, S.: An introduction to robot component model for OPROS (open platform for robotic services). In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Venice, Italy (2008)

  13. Jang, C., Lee, S., Jung, S., Song, B., Kim, R., Kim, S., Lee, C.: OPROS: a new component-based robot software platform. ETRI J. 32(5), 646–656 (2010)

    Article  Google Scholar 

  14. Postsharp available at: https://www.postsharp.net/downloads/postsharp-3.1 (2013)

  15. Shin, M.E., Kang, T., Kim, S., Jung, S., Roh, M.: Reconfiguration of robot applications using data dependency and impact analysis. In: 24th International Conference on Software Engineering and Knowledge Engineering, San Francisco (2012)

  16. Wei, H., Duan, X., Li, S., Tong, G., Wang, T.: A component based design framework for robot software architecture. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS09), St. Louis, USA (2009)

  17. Åkerholm, M., Möller, A., Hansson, H., Nolin, M.: Towards a dependable component technology for embedded system applications. In: 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems, Sedona, Arizona, USA (2005)

  18. Biggs, G.: Flexible, adaptable utility components for component-based robot software. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska (2010)

  19. Brooks, A.T., Kaupp, A., Makarenko, A., Williams, S., Oreback, A.: Towards component-based robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS05), Alberta, Canada, p. 2005 (2005)

  20. IRObot create, available at: http://www.irobot.com (2011)

  21. Steinbauer, G., Morth, M., Wotawa, F.: Real-time diagnosis and repair of faults of robot control software. In: Robotcup 2005: Robot Soccer World Cup IX, LNCS, vol. 4020, pp. 13–23 (2006)

  22. Hofbaur, M., Kob, J., Steinbauer, G., Wotawa, F.: Improving robustness of mobile robots using model-based reasoning. J. Intell. Robot. Syst. 48(1), 37–54 (2007)

    Article  Google Scholar 

  23. Demetriou, G.A.: A survey of sensors for localization of unmanned ground vehicles (UGVs). In: International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, vol. 2, pp. 659–668 (2006)

  24. Galluzzo, T., Kent, D.: The OpenJAUS approach to designing and implementing the new sae JAUS standards. In: AUVSI Unmanned Systems Conference, Denver/Colorado, USA (2010)

  25. Upcroft, B., Ridley, M., Ong, L.L., Douillard, B., Kaupp, T., Kumar, S., Bailey, T., Ramos, F., Makarenko, A., Brooks, A., Sukkarieh, S., Durrant-Whyte, H.F.: Multilevel state estimation in an outdoor decentralized sensor network. In: 10th International Symposium on Experimental Robotics, Rio De Janiero (2006)

  26. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Lazarova-Molnar, S.: A service-oriented middleware for building collaborative UAVs. J. Intell. Robot. Syst. 74(1-2), 309–321 (2014)

    Article  Google Scholar 

  27. Paunicka, J.L., Corman, D.E., Mendel, B.R.A.: CORBA-based middleware solution for UAVs. In: Fourth International Symposium on Object-Oriented Real-Time Distributed Computing, Magdeburg, Germany, pp. 261–267 (2001)

  28. Committee on Army Unmanned Ground Vehicle Technology: Technology Development for Army Unmanned Ground Vehicles. National Academies Press (2002)

  29. Edwards, G., Deng, G., Schmidt, D.C., Gorkhale, A., Natarajan, B.: Model-driven configuration and deployment of component middleware publish/subscribe services. GPCE 2004. LNCS 3286, 337–360 (2004)

    Google Scholar 

  30. LEGO Mindstorms, available at: http://mindstorms.lego.com (2015)

  31. Oh, B.J., Bae, Y.S., Moon, K.D., Ha, Y.G.: An error messages clustering-based fault management framework for adaptive home network middleware. IEEE Trans. Consum. Electron. 56(1), 63–69 (2010)

    Article  Google Scholar 

  32. Ahn, H., Lee, D., Ahn, S.C.: Hierarchical fault tolerant architecture for component-based service robots. In: 8th IEEE International Conference on Industrial Informatics, Osaka, pp. 487–492 (2010)

  33. Shin, M.E., Kang, T., Kim, S.: Detection and notification of failures in distributed component-based robot applications using blackboard architecture. In: International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), Daejeon, Korea (2014)

  34. Rumbaugh, J., Booch, G., Jacobson, I.: The Unified Modeling Language Reference Manual, 2nd edn. Addison-Wesley Inc., Boston, Reading (2004)

    Google Scholar 

  35. Realpe, M., Vintimilla, B.X., Vlacic, L.: Fault tolerant perception system for autonomous vehicles. In: 35th Chinese Control Conference (CCC2016), Chengdu, China (2016)

  36. Kim, J., Rajkumar, R.R., Jochim, M.: Towards dependable autonomous driving vehicles: a system-level approach. ACM SIGBED Review 10(1), 29–32 (2013)

    Article  Google Scholar 

  37. Sun, C., He, W., Ge, W., Chang, C.: Adaptive neural network control of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 47(2), 315–326 (2017)

    Google Scholar 

  38. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inf. 13(1), 48–59 (2017)

    Article  Google Scholar 

  39. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Transactions on Neural Networks and Learning Systems PP(99), 1–13 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Foundation Technology Development Program of MKE/KEIT [10044006, Development of Open Robot Middleware Supporting User-Friend Developer Tools and Standard Robot API Components].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeghyun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, M.E., Kang, T. & Kim, S. Blackboard Architecture for Detecting and Notifying Failures for Component-Based Unmanned Systems. J Intell Robot Syst 90, 571–585 (2018). https://doi.org/10.1007/s10846-017-0677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0677-4

Keywords