Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Guidance-Control System of a Quadrotor for Optimal Coverage in Cluttered Environment with a Limited Onboard Energy: Complete Software

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a Guidance-Control System (GCS) for optimal coverage planning, using a quadrotor, in damaged area is considered. The quadrotor is assumed to visit a set of reachable points, defined manually by the user or automatically generated, following the shortest path while avoiding the no-fly zones. The problem is solved by using a two-stage proposed algorithm. In the first stage, a novel tool for cluttered environments based on optimal Rapidly-exploring Random Trees (RRT) approach, called Multi-RRT* Fixed Node (RRT*FN), is developed to define the shortest paths from each point to its neighbors. By means of the pair-wise costs between points provided by the first-stage algorithm, in the second stage, the overall shortest path is obtained by solving a Traveling Salesman Problem (TSP) using Genetic Algorithms (GA). Taking into consideration the limited onboard energy, multi-rounds for the coverage planning are assumed as an alternative by adapting our problem as a Vehicle Routing Problem (VRP). This latter is solved using the savings heuristic approach. The guidance module is supported by an efficient controller that minimizes the consumed energy and allows a damped response (i.e. without overshoot). It is a reference model based control strategy called Interconnection Damping Assignment-Passivity Based Control (IDA-PBC). The effectiveness of the overall system is demonstrated via numerical simulations and confirmed experimentally with very promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. Int. J. Robot. Res. 21(4), 331–344 (2002). https://doi.org/10.1177/027836402320556359

    Article  Google Scholar 

  2. Wang, X., Syrmos, V.L.: Coverage path planning for multiple robotic agent-based inspection of an unknown 2d environment. In: 2009 17th Mediterranean conference on control and automation, pp 1295–1300 (2009). https://doi.org/10.1109/MED.2009.5164725

  3. Yakoubi, M.A., Laskri, M.T.: The path planning of cleaner robot for coverage region using Genetic Algorithms. Journal of innovation in digital ecosystems 3(1), 37–43 (2016). https://doi.org/10.1016/j.jides.2016.05.004

    Article  Google Scholar 

  4. Choi, Y.H., Lee, T.K., Baek, S.H., Oh, S.Y.: Online complete coverage path planning for mobile robots based on linked spiral paths using constrained inverse distance transform. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5788–5793 (2009). https://doi.org/10.1109/IROS.2009.5354499

  5. Choset, H.: Coverage for robotics – A survey of recent results. Ann. Math. Artif. Intell. 31(1-4), 113–126 (2001). https://doi.org/10.1023/A:1016639210559

    Article  MATH  Google Scholar 

  6. Goerzen, C., Kong, Z., Mettler, B.: A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance. J. Intell. Robot. Syst. 57(1-4), 65 (2010). https://doi.org/10.1007/s10846-009-9383-1

    Article  MATH  Google Scholar 

  7. Choset, H.M.: Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press (2005)

  8. Shivashankar, Jain, R., Kuter, U., Nau, D.: Real-Time Planning for Covering an Initially-Unknown Spatial Environment (2011)

  9. An, V., Qu, Z.: Triangulation-based path planning for patrolling by a mobile robot. In: 2013 Australian Control Conference, pp 183–188 (2013). https://doi.org/10.1109/AUCC.2013.6697270

  10. Guo, Y., Qu, Z.: Coverage control for a mobile robot patrolling a dynamic and uncertain environment. In: 5th World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), vol. 6, pp 4899–4903 (2004). https://doi.org/10.1109/WCICA.2004.1343643

  11. Zelinsky, A., Jarvis, R.A., Byrne, J.C., Yuta, S.: Planning paths of complete coverage of an unstructured environment by a mobile robot. In: Proceedings of International Conference on Advanced Robotics, pp 533–538 (1993)

  12. Gabriely, Y., Rimon, E.: Spiral-STC: an on-line coverage algorithm of grid environments by a mobile robot. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1, pp 954–960 (2002). https://doi.org/10.1109/ROBOT.2002.1013479

  13. Gonzalez, E., Alvarez, O., Diaz, Y., Parra, C., Bustacara, C.: BSA: A Complete Coverage Algorithm. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp 2040–2044 (2005). https://doi.org/10.1109/ROBOT.2005.1570413

  14. Luo, C., Yang, S.X.: A real-time cooperative sweeping strategy for multiple cleaning robots. In: Proceedings of the IEEE Internatinal Symposium on Intelligent Control. https://doi.org/10.1109/ISIC.2002.1157841, pp 660–665 (2002)

  15. Driscoll, T.: Complete coverage path planning in an agricultural environment, Graduate Theses and Dissertations. http://lib.dr.iastate.edu/etd/12095

  16. Castellanos, J.A., Tardos, J.D., Schmidt, G.: Building a global map of the environment of a mobile robot: the importance of correlations. In: Proceedings of International Conference on Robotics and Automation, vol. 2, pp 1053–1059 (1997). https://doi.org/10.1109/ROBOT.1997.614274

  17. Pharpatara, P., Hérissé, B., Bestaoui, Y.: 3-D Trajectory Planning of Aerial Vehicles Using RRT #x002a. IEEE Trans. Control Syst. Technol. 25(3), 1116–1123 (2017). https://doi.org/10.1109/TCST.2016.2582144

    Article  Google Scholar 

  18. Carsten, J., Ferguson, D., Stentz, A.: 3d Field D: Improved Path Planning and Replanning in Three Dimensions. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3381–3386 (2006). https://doi.org/10.1109/IROS.2006.282516

  19. Daily, R., Bevly, D.M.: Harmonic potential field path planning for high speed vehicles. In: 2008 American Control Conference, pp 4609–4614 (2008). https://doi.org/10.1109/ACC.2008.4587222

  20. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  21. Pharpatara, P., Hérissé, B., Pepy, R., Bestaoui, Y.: Sampling-based path planning: a new tool for missile guidance. IFAC Proceedings Volumes 46(19), 131–136 (2013). https://doi.org/10.3182/20130902-5-DE-2040.00091

    Article  Google Scholar 

  22. Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Two-scale geometric path planning of quadrotor with obstacle avoidance: First step toward coverage algorithm. In: 2017 11th International Workshop on Robot Motion and Control (RoMoCo), pp 166–171 (2017). https://doi.org/10.1109/RoMoCo.2017.8003909

  23. Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Quadrotor-UAV optimal coverage path planning in cluttered environment with a limited onboard energy. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 979–984 (2017). https://doi.org/10.1109/IROS.2017.8202264

  24. Planning Algorithms / Motion Planning. http://planning.cs.uiuc.edu/

  25. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE Conference on Decision and Control (CDC), pp 7681–7687 (2010). https://doi.org/10.1109/CDC.2010.5717430

  26. Adiyatov, O., Varol, H.A.: Rapidly-exploring random tree based memory efficient motion planning. In: 2013 IEEE International Conference on Mechatronics and Automation, pp 354–359 (2013). https://doi.org/10.1109/ICMA.2013.6617944

  27. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics 47, 49–66 (2017). https://doi.org/10.1016/j.mechatronics.2017.08.002

    Article  Google Scholar 

  28. Ortega, R., García-Canseco, E.: Interconnection and Damping Assignment Passivity-Based Control: A Survey. Eur. J. Control. 10(5), 432–450 (2004). https://doi.org/10.3166/ejc.10.432-450

    Article  MathSciNet  MATH  Google Scholar 

  29. Guerrero, J.A., Bestaoui, Y.: Uav path planning for structure inspection in windy environments. J. Intell. Robot. Syst. 69(1), 297–311 (2013). https://doi.org/10.1007/s10846-012-9778-2

    Article  Google Scholar 

  30. Flood, M.M.: The Traveling-Salesman Problem. Operations Research 4(1), 61–75 (1956). https://doi.org/10.1287/opre.4.1.61

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, Q., Chen, S.: A New Ant Evolution Algorithm to Resolve TSP Problem. In: Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp 62–66 (2007). https://doi.org/10.1109/ICMLA.2007.18

  32. Yan, X.s., Liu, H.m., Yan, J., Wu, Q.h.: A fast evolutionary algorithm for traveling salesman problem. In: 3rd International Conference on Natural Computation (ICNC 2007), vol. 4, pp 85–90 (2007). https://doi.org/10.1109/ICNC.2007.23

  33. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959). https://doi.org/10.1287/mnsc.6.1.80

    Article  MathSciNet  MATH  Google Scholar 

  34. Pichpibul, T., Kawtummachai, R.: A Heuristic Approach Based on Clarke-Wright Algorithm for Open Vehicle Routing Problem, The Scientific World Journal 2013. e874349 https://doi.org/10.1155/2013/874349 (2013)

  35. Huang, W.H.: Optimal line-sweep-based decompositions for coverage algorithms. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 1, pp 27–32 (2001). https://doi.org/10.1109/ROBOT.2001.932525

  36. Lilienthal, A.J., Duckett, T., Ishida, H., Werner, F.: Indicators of gas source proximity using metal oxide sensors in a turbulent environment. In: The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006, pp 733–738 (2006). https://doi.org/10.1109/BIOROB.2006.1639177

  37. Russell, R.A., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of reactive robot chemotaxis algorithms. Robot. Auton. Syst. 45(2), 83–97 (2003). https://doi.org/10.1016/S0921-8890(03)00120-9

    Article  Google Scholar 

  38. Tao, D., Wu, T.Y.: A survey on barrier coverage problem in directional sensor networks. IEEE Sensors J. 15(2), 876–885 (2015). https://doi.org/10.1109/JSEN.2014.2310180

    Article  Google Scholar 

  39. Persson, P.-O.: Mesh generation for implicit geometries, Ph.D. thesis MIT (2005)

  40. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y., Zareb, M.: Energy Based 3d Autopilot for VTOL UAV Under Guidance & Navigation Constraints. J. Intell. Robot. Syst. pp. 1–22. https://doi.org/10.1007/s10846-016-0441-1(2016)

  41. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002). https://doi.org/10.1109/TAC.2002.800770

    Article  MathSciNet  MATH  Google Scholar 

  42. Knott, G.D.: Cubic spline vector space basis functions. https://doi.org/10.1007/978-1-4612-1320-8_13 (2000)

  43. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2012.6385458, pp 2815–2821 (2012)

  44. Wang, J., Geamanu, M.S., Cela, A., Mounier, H., Niculescu, S.I.: Event driven model free control of quadrotor. In: 2013 IEEE International Conference on Control Applications (CCA). https://doi.org/10.1109/CCA.2013.6662835, pp 722–727 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bouzid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, Y., Bestaoui, Y. & Siguerdidjane, H. Guidance-Control System of a Quadrotor for Optimal Coverage in Cluttered Environment with a Limited Onboard Energy: Complete Software. J Intell Robot Syst 95, 707–730 (2019). https://doi.org/10.1007/s10846-018-0914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0914-5

Keywords