Abstract
Due to the convenience in applications, interconnection and damping assignment passivity-based control (IDA-PBC) is applied widely to reformulate the nonlinear robust control as the total energy shaping. However, only few researches focus on the fault-tolerant control (FTC) method based on IDA-PBC, which limits its applications under actuator faults. To break this limitation, this paper improves the IDA-PBC with fault-tolerant ability, and the main contributions are to propose high-gain and adaptive IDA-PBC methods under loss of actuator effectiveness. The simulation and experiment results with a rotorcraft unmanned aerial vehicle (RUAV) are presented to illustrate the control effectiveness of the improved IDA-PBC methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ortega, R., Loria, A., Nicklasson, P.J., Sira-Ramirez, H.: Passivity-based Control of Euler-Lagrange Systems. Springer, UK (1998)
Ortega, R., Schaft, A., Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4), 585–596 (2002)
Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE T. Automat. Contr. 47(8), 1218–1233 (2002)
Acosta, J.A., Sanchez, M.I., Ollero, A.: Robust control of underactuated aerial manipulators via IDA-PBC. In: 53Rd IEEE Conference on Decision and Control, pp 673–678. Los Angeles, USA (2014)
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y., Zareb, M.: Energy based 3D autopilot for VTOL UAV under guidance & navigation constraints. J. Intell. Robot. Syst. 87(2), 341–362 (2017)
Guerrero-Sanchez, M.E., Mercado-Ravell, A., Lozano, R., Garcia-Beltran, C.D.: Swing-attenuation for a quadrotor transporting a cable-suspended payload. ISA Trans. 68, 433–449 (2017)
Serra, F.M., Angelo, C.H.D., Forchetti, D.G.: IDA-PBC Control of a DC-AC converter for sinusoidal three-phase voltage generation. Int. J. Electron. 104(1), 93–110 (2016)
Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)
Nasiri, A., Nguang, S.K., Swain, A., Almakhles, D.: Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. Int. J. Control 92(3), 693–704 (2019)
Shen, Q., Wang, D., Zhu, S., Poh, E.K.: Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft. IEEE T. Contr. Syst. T. 23(3), 1131–1138 (2015)
Wang, B., Zhang, Y.: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE T. Ind. Electron. 65(5), 4227–4236 (2018)
Li, Y., Yang, G.: Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatic 72, 177–185 (2016)
Xiao, B., Hu, Q., Friswell, M.I.: Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness. Int. J. Adapt. Control 27(11), 925–943 (2013)
Lin, X., Dong, H.: Tuning function-based adaptive backstepping fault-tolerant control for nonlinear systems with actuator faults and multiple disturbances. Nonlinear Dynam. 91(4), 2227–2239 (2018)
Hu, Q., Xiao, B.: Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness. J. Guid. Control Dynam. 34(3), 927–932 (2011)
Lopez-Estrada, F.R., Ponsart, J., Theilliol, D., Zhang, Y., Astorga-Zaragoza, C.: LPV Model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV. J. Intell. Robot. Syst. 84(1-4), 163–177 (2016)
Liu, Z., Theilliol, D., Yang, L., He, Y., Han, J.: Observer-based linear parameter varying control design with unmeasurable varying parameters under sensor faults for quad-tilt rotor unmanned aerial vehicle. Aerosp. Sci. Technol. 92, 696–171 (2019)
Chen, J., Zhang, W., Cao, Y., Chu, H.: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE T. Syst. Man Cy.-S. 47(7), 1336–1347 (2017)
Jiang, J., Yu, X.: Fault-tolerant control systems: a comparative study between active and passive approaches. Annu. Rev. Control 36(1), 60–72 (2012)
Benosman, M., Lum, K.Y.: Application of passivity and cascade structure to robust control against loss of actuator effectiveness. Int. J. Robust Nonlin. 20(6), 673–693 (2010)
Donaire, A., Romero, J.G., Ortega, R., Siciliano, B., Crespo, M.: Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust Nonlin. 27(6), 1000–1016 (2017)
Wan, E.A., Merwe, R.: The unscented kalman filter for nonlinear estimation. In: IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 1–6. Alberta, Canada (2000)
Zhang, X., Zhang, Y., Su, C., Feng, Y.: Fault-tolerant control for quadrotor UAV via backstepping approach. In: 48Th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp. 1–12. Florida, USA (2010)
Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, USA (2002)
Hashemi, M., Egoli, A.K., Naraghi, M.: Integrated fault tolerant control for saturated systems with additive faults: a comparative study of saturation models. Int. J. Control Autom. 17(4), 1019–1030 (2019)
Shao, X., Hu, Q., Shi, Y., Jiang, B.: Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE T. Contr Syst. T., pp. 1–9 (2018)
Shen, Q., Yue, C., Goh, C.H., Wang, D.: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE T. Ind. Electron. 22(6), 3763–3772 (2019)
Dai, B., He, Y., Zhang, G., Gu, F., Yang, L., Xu, W.: Wind disturbance rejection for unmanned aerial vehicle based on acceleration feedback method. In: IEEE 2018 Conference on Decision and Control, pp. 4680–4686. Miami Beach, USA (2018)
Lee, T., Leok, M., McClamroch, H.: Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J. Control 15(3), 1–18 (2013)
Schneider, T., Ducard, G., Rudin, K., Strupler, P.: Faulttolerant control allocation for multirotor helicopters using parametric programming. In: International Micro Air Vehicle Confrence and Flight Competition. Braunschweig, Germany (2012)
Du, G., Quan, Q., Cai, K.: Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. J. Intell. Robot. Syst. 78(1), 143–157 (2015)
Qi, J., Song, D., Wu, C., Han, J., Wang, T.: KF-Based adaptive UKF algorithm and its application for rotorcraft UAV actuator failure estimation. Int. J. Adv. Robot. Syst. 9(4), 1–9 (2012)
Acknowledgements
This work was supported by National Key Research and Development Program of China (No. 2017YFD0701002) and National Natural Science Foundation of China (Nos. 91748130 and U1608253).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Z., Theilliol, D., Yang, L. et al. Interconnection and Damping Assignment Passivity-Based Control Design Under Loss of Actuator Effectiveness. J Intell Robot Syst 100, 29–45 (2020). https://doi.org/10.1007/s10846-020-01170-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-020-01170-8