Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LoPoFly: Location and Positioning Optimization for Flying Networks

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In areas that demand short-term Internet connectivity, like events and mobile offices, it is not feasible to have a permanent wireless Internet infrastructure. To provide broadband Internet access to temporary clients, we propose the use of flying networks. These networks need to be carefully managed, mainly due to the limitation on their nodes’ battery capacity. Considering these issues, we introduce a new Location and Positioning Optimization Technique for Flying Networks (LoPoFly). LoPoFly includes two modules: (i) location that uses the Deterministic Annealing (DA) metaheuristic to find a location where a flying node is required based on client distribution and (ii) positioning that manages relocation and exchange of flying nodes. To the best of our knowledge, this is the first approach that employs the DA metaheuristic to manage the flying networks covering restrictions related to energy, replacement, communication, and mobility together. Through simulations, we analyze the performance of LoPoFly in two different mobility scenarios. The results show that in both scenarios, LoPoFly mitigates the number of required flying nodes, even serving a higher number of clients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. ACLF: Austin city limits festival. https://aclfestival.com 2017. Accessed: 15 (2017)

  2. ACLF: Austin city limits festival map. http://goo.gl/W2mrEZ. Access: 08-15-2017 (2017)

  3. Afonso, L., Souto, N., Sebastião, P, Ribeiro, M., Tavares, T., Marinheiro, R.: Cellular for the skies: Exploiting mobile network infrastructure for low altitude air-to-ground communications. IEEE Aerosp. Electron. Syst. Mag. 31, 4–11 (2016)

    Article  Google Scholar 

  4. Alzenad, M., El-Keyi, A., Lagum, F., Yanikomeroglu, H.: 3-d placement of an unmanned aerial vehicle base station (uav-bs) for energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 6, 434–437 (2017)

    Article  Google Scholar 

  5. Alzenad, M., El-Keyi, A., Yanikomeroglu, H.: 3-d placement of an unmanned aerial vehicle base station for maximum coverage of users with different qos requirements. IEEE Wirel. Commun. Lett. 7, 38–41 (2018)

    Article  Google Scholar 

  6. Baranwal, M., Salapaka, S.M.: Clustering with capacity and size constraints: A deterministic approach. Indian Control Conference. https://doi.org/10.1109/INDIANCC.2017.7846483 (2017)

  7. Bekmezci, I., Sahingoz, O.K., Temel, S.: Flying ad-hoc networks (fanets): A survey. Ad Hoc Netw. 11, 1254–1270 (2013)

    Article  Google Scholar 

  8. Bor-Yaliniz, R.I., El-Keyi, A., Yanikomeroglu, H.: Efficient 3-d placement of an aerial base station in next generation cellular networks. IEEE International conference on communication. https://doi.org/10.1109/ICC.2016.7510820 (2016)

  9. Cai, G., Dias, J., Seneviratne, L.: A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Syst. 2, 175–199 (2014)

    Article  Google Scholar 

  10. Cevik, P., Kocaman, I., Akgul, A.S., Akca, B.: The small and silent force multiplier: A swarm uav-electronic attack. Intell. Robot. Syst. 70, 595–608 (2013)

    Google Scholar 

  11. Cisco: Cisco Aironet 1570 series outdoor access point. Cisco. https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-1570-series/datasheet-c78-732348.html, accessed: 02 February 2019 (2018)

  12. Doria, N.S.F., Freire, E.O., Basilio, J.C.: An algorithm inspired by the deterministic annealing approach to avoid local minima in artificial potential fields. International conference on advanced robotics. https://doi.org/10.1109/ICAR.2013.6766480 (2013)

  13. Fotouhi, A., Ding, M., Hassan, M.: Flying drone base stations for macro hotspots. IEEE Access 6, 19530–19539 (2018)

    Article  Google Scholar 

  14. Garcia, G., Monego, H.I.D., Pellenz, M.E., Souza, R.D., Munaretto, A., Fonseca, M.S.P.: An iterative heuristic approach for channel and power allocation in wireless networks. Ann. Telecomm. 73, 293–303 (2018)

    Article  Google Scholar 

  15. Goldsmith, A.: Wireless communications. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  16. Golub, G.H., Loan, C.F.V.: Matrix computations. Johns Hopkins University Press, Baltimore (1985)

    MATH  Google Scholar 

  17. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Commun. Surv. Tutor. 18, 2624–2661 (2016)

    Article  Google Scholar 

  18. Jaynes, E.T.: Information theory and statistical mechanics. ii. Phys. Rev. 108, 171–190 (1957)

    Article  MathSciNet  Google Scholar 

  19. Klaine, P.V., Nadas, J.P., Souza, R.D., Imran, M.A.: Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cogn. Comput. 10, 790–804 (2018)

    Article  Google Scholar 

  20. van Laarhoven, P., Aarts, E.: Simulated annealing: Theory and applications. Springer, Netherlands (1987)

    Book  Google Scholar 

  21. Malandrino, F., Chiasserini, C.F., Casetti, C., Chiaraviglio, L., Senacheribbe, A.: Ad hoc networks planning uav activities for efficient user coverage in disaster areas. Ad Hoc Netw. 89, 177–185 (2019)

    Article  Google Scholar 

  22. Matolak, D.W.: Unmanned aerial vehicles: Communications challenges and future aerial networking. International conference on computing networking and communications. https://doi.org/10.1109/ICCNC.2015.7069407 (2015)

  23. de Melo, R.R.S., Costa, D.B., Ȧlvares, J.S., Irizarry, J.: Applicability of unmanned aerial system (uas) for safety inspection on construction sites. Saf. Sci. 98, 174–185 (2017)

    Article  Google Scholar 

  24. Messous, M.A., Sedjelmaci, H., Senouci, S. M.: Implementing an emerging mobility model for a fleet of uavs based on a fuzzy logic inference system. Pervasive Mob. Comput. 42, 393–410 (2017)

    Article  Google Scholar 

  25. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., Mohammed, F.: Unmanned aerial vehicles applications in future smart cities. Technological forecasting and social change. https://doi.org/10.1016/j.techfore.2018.05.004 (2018)

  26. Motlagh, N.H., Bagaa, M., Taleb, T.: Uav selection for a uav-based integrative iot platform. IEEE global communications conference. https://doi.org/10.1109/GLOCOM.2016.7842359 (2016)

  27. Motlagh, N.H., Bagaa, M., Taleb, T.: Uav-based iot platform: A crowd surveillance use case. IEEE Commun. Mag. 55, 128–134 (2017)

    Article  Google Scholar 

  28. NS3: Network simulator 3. http://nsnam.org (2019). Accessed: 30 (2019)

  29. Parekh, P.M., Katselis, D., Beck, C.L., Salapaka, S.M.: Deterministic annealing for clustering: Tutorial and computational aspects. American control conference (ACC). https://doi.org/10.1109/ACC.2015.7171176 (2015)

  30. Perumal, S., Baras, J.S.: Aerial platform placement algorithm to satisfy connectivity and capacity constraints in wireless ad-hoc networks. IEEE global telecommunications conference. https://doi.org/10.1109/GLOCOM.2008.ECP.106 (2008)

  31. Rangarajan, A., Gold, S., Mjolsness, E.: A novel optimizing network architecture with applications. Neural Comput. 8, 1041–1060 (1996)

    Article  Google Scholar 

  32. Reina, D.G., Tawfik, H., Toral, S.L.: Multi-subpopulation evolutionary algorithms for coverage deployment of uav-networks. Ad Hoc Netw. 68, 16–32 (2018)

    Article  Google Scholar 

  33. Rohde, S., Wietfeld, C., Rohde, S., De, C.W.: Interference aware positioning of aerial relays for cell overload and outage compensation. IEEE vehicular technology conference. https://doi.org/10.1109/VTCFall.2012.6399121(2012)

  34. Rohde, S., Putzke, M., Wietfeld, C.: Ad hoc self-healing of ofdma networks using uav-based relays. Ad Hoc Netw. 11, 1893–1906 (2013)

    Article  Google Scholar 

  35. Rose, K.: Deterministic annealing for clustering, compression, classification, regression and related optimisation problems. Proc. IEEE 86, 2210–2239 (1998)

    Article  Google Scholar 

  36. Salapaka, S., Khalak, A., Dahleh, M.A.: Constraints on locational optimization problems. 42nd IEEE international conference on decision and control (IEEE Cat No.03CH37475). https://doi.org/10.1109/CDC.2003.1272864 (2003)

  37. Sánchez-García, J., Reina, D.G., Toral, S.L.: A distributed pso-based exploration algorithm for a uav network assisting a disaster scenario. Futur. Gener. Comput. Syst. 90, 129–148 (2019)

    Article  Google Scholar 

  38. Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Venkataraman, S., Wang, J.: A first look at cellular network performance during crowded events. ACM SIGMETRICS performance evaluation review. https://doi.org/10.1145/2494232.2465754 (2013)

  39. Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Venkataraman, S., Wang, J.: Characterizing and optimizing cellular network performance during crowded events. IEEE/ACM Trans. Netw. 24, 1308–1321 (2016)

    Article  Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  41. Sharma, P., Salapaka, S., Beck, C.: Entropy based algorithm for combinatorial optimization problems with mobile sites and resources. American control conference. https://doi.org/10.1109/ACC.2008.4586665(2008)

  42. Sharma, V., Kumar, R.: A cooperative network framework for multi-uav guided ground ad hoc networks. Intell. Robot. Syst. Theory Appl. 77, 629–652 (2015)

    Article  Google Scholar 

  43. Sharma, V., Bennis, M., Kumar, R.: Uav-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. 20, 1207–1210 (2016)

    Article  Google Scholar 

  44. Sharma, V., Srinivasan, K., Chao, H.C., Hua, K.L., Cheng, W. H.: Intelligent deployment of uavs in 5g heterogeneous communication environment for improved coverage. Netw. Comput. Appl. 85, 94–105 (2017)

    Article  Google Scholar 

  45. Sharma, V., Jayakody, D.N.K., Srinivasan, K.: On the positioning likelihood of uavs in 5g networks. Phys. Commun. 31, 1–9 (2018)

    Article  Google Scholar 

  46. Shinkuma, R., Goto, Y.: Wireless multihop networks formed by unmanned aerial vehicles with separable access points and replaceable batteries. IEEE 7th annual ubiquitous computing electronics and mobile communication conference. https://doi.org/10.1109/UEMCON.2016.7777900 (2016)

  47. Sun, P., Boukerche, A.: Performance modeling and analysis of a uav path planning and target detection in a uav-based wireless sensor network. Comput. Netw. 146, 217–231 (2018)

    Article  Google Scholar 

  48. Sun, Y., Wang, T., Wang, S.: Location optimization for unmanned aerial vehicles assited mobile networks. IEEE international conference on communications. https://doi.org/10.1109/ICC.2018.8423028 (2018)

  49. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of unmanned aerial vehicles. Springer, Dordrecht (2015)

    Book  Google Scholar 

  50. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: Communications, coordination, and sensing. Ad Hoc Netw. 68, 1–15 (2018)

    Article  Google Scholar 

  51. Yuan, H., Xiao, C., Zhan, W., Wang, Y., Shi, C., Ye, H., Jiang, K., Ye, Z., Zhou, C., Wen, Y., Li, Q.: Target detection, positioning and tracking using new uav gas sensor systems: Simulation and analysis. J. Intell. Robot. Syst. 94(3), 871–882 (2019). https://doi.org/10.1007/s10846-018-0909-2

    Article  Google Scholar 

  52. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles. IEEE Commun. Mag. 54, 36–42 (2016)

    Article  Google Scholar 

  53. Zhang, S., Zhang, H., He, Q., Bian, K., Song, L.: Joint trajectory and power optimization for uav relay networks. IEEE Commun. Lett. 22, 161–164 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelise Munaretto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, G., Vendramin, A.C.K., Del Monego, H.I. et al. LoPoFly: Location and Positioning Optimization for Flying Networks. J Intell Robot Syst 100, 711–728 (2020). https://doi.org/10.1007/s10846-020-01194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01194-0

Keywords