Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Classical and Deep Learning based Visual Servoing Systems: a Survey on State of the Art

  • Survey Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Computer vision, together with bayesian estimation algorithms, sensors, and actuators, are used in robotics to solve a variety of critical tasks such as localization, obstacle avoidance, and navigation. Classical approaches in visual servoing systems relied on extracting features from images to control robot movements. Now, state of the art computer vision systems use deep neural networks in tasks such as object recognition, detection, segmentation, and tracking. These networks and specialized controllers play a predominant role in the design and implementation of modern visual servoing systems due to their accuracy, flexibility, and adaptability. Recent research in direct systems for visual servoing has created robotic systems capable of relying only on the information contained in the whole image. Furthermore, end-to-end systems learn the control laws during training, eliminating entirely the controller. This paper presents a comprehensive survey on the state of the art in visual servoing systems, discussing the latest classical methods not included in other surveys but emphasizing the new approaches based on deep neural networks and their applications in a broad variety of applications within robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. 3m full hd wdr usb camera module. https://www.iadiy.com/high-resolution-USB-camera-modules-CM5M30M12C. Accessed:2020-06-13

  2. Cornell university. robot learning lab: Learning to grasp. http://pr.cs.cornell.edu/grasping/rect_data/data.php. Accessed: 2020-08-27

  3. Idsia dataset. http://people.idsia.ch/guzzi/DataSet.htmlhttp://people.idsia.ch/guzzi/DataSet.html. Accessed: 2020-09-27

  4. Jacquard dataset. https://jacquard.liris.cnrs.fr/. Accessed: 2021-04-01

  5. Abdelkader, H.H., Mezouar, Y., Andreff, N., Martinet, P.: 2 1/2 D visual servoing with central catadioptric cameras. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3572–3577. IEEE (2005)

  6. Ahlin, K., Joffe, B., Hu, A.P., McMurray, G., Sadegh, N.: Autonomous leaf picking using deep learning and visual-servoing. IFAC-PapersOnLine 49(16), 177–183 (2016)

    Article  Google Scholar 

  7. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Al-Kaff, A., Martín, D., García, F., de la Escalera, A., María Armingol, J.: Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Syst. Appl. 92, 447–463 (2018). https://doi.org/10.1016/j.eswa.2017.09.033. http://www.sciencedirect.com/science/article/pii/S0957417417306395

    Article  Google Scholar 

  9. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning approach for object recognition with Nao soccer robots. In: Robot World Cup, pp. 392–403. Springer (2016)

  10. Allen, P.K., Yoshimi, B., Timcenko, A.: Real-time visual servoing (1990)

  11. Allibert, G., Hua, M.D., Krupínski, S., Hamel, T.: Pipeline following by visual servoing for autonomous underwater vehicles. Control Engineering Practice 82, 151–160 (2019). https://doi.org/10.1016/j.conengprac.2018.10.004. http://www.sciencedirect.com/science/article/pii/S0967066118306312

    Article  Google Scholar 

  12. Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M., Van Essen, B.C., Awwal, A.A.S., Asari, V.K.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3). https://doi.org/10.3390/electronics8030292. https://www.mdpi.com/2079-9292/8/3/292 (2019)

  13. Andersson, R.L.: Real time expert system to control a robot ping-pong player (1988)

  14. Araar, O., Aouf, N.: Visual servoing of a quadrotor Uav for autonomous power lines inspection. In: 22Nd Mediterranean Conference on Control and Automation, pp. 1418–1424. IEEE (2014)

  15. Asada, M., Stone, P., Kitano, H., Werger, B., Kuniyoshi, Y., Drogoul, A., Duhaut, D., Veloso, M., Asama, H., Suzuki, S.: The robocup physical agent challenge: Phase i. Appl. Artif. Intell. 12(2-3), 251–263 (1998)

    Article  Google Scholar 

  16. Ba, S., Alameda-Pineda, X., Xompero, A., Horaud, R.: An on-line variational bayesian model for multi-person tracking from cluttered scenes. Comput. Vis. Image Underst. 153, 64–76 (2016)

    Article  Google Scholar 

  17. Ban, Y., Alameda-Pineda, X., Badeig, F., Ba, S., Horaud, R.: Tracking a varying number of people with a visually-controlled robotic head. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4144–4151. IEEE (2017)

  18. Bateux, Q.: Going further with direct visual servoing. Ph.D. thesis, Université, Rennes 1 (2018)

  19. Bateux, Q., Marchand, E.: Histograms-based visual servoing. IEEE Robot. Autom. Lett. 2 (1), 80–87 (2016)

    Article  Google Scholar 

  20. Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P.: Visual servoing from deep neural networks. arXiv:1705.08940 (2017)

  21. Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P.: Training deep neural networks for visual servoing. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)

  22. Bekey, G., Yuh, J.: The status of robotics. IEEE Robot. Autom. Mag. 15(1), 80–86 (2008)

    Article  Google Scholar 

  23. Benini, A., Mancini, A., Longhi, S.: An imu/uwb/vision-based extended kalman filter for mini-uav localization in indoor environment using 802.15. 4a wireless sensor network. J. Intell. Robot. Syst. 70 (1-4), 461–476 (2013)

    Article  Google Scholar 

  24. Besl, P.J.: Active optical range imaging sensors. In: Advances in Machine Vision, pp. 1–63. Springer (1989)

  25. Bicer, Y., Moghadam, M., Sahin, C., Eroglu, B., Üre, N. K.: Vision-Based Uav guidance for autonomous landing with deep neural networks. In: AIAA Scitech 2019 Forum, pp. 0140 (2019)

  26. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. arXiv:1604.07316 (2016)

  27. Borenstein, J., Everett, H.R., Feng, L., Wehe, D.: Mobile robot positioning: sensors and techniques. J. Robot. Syst. 14(4), 231–249 (1997)

    Article  Google Scholar 

  28. Buades, A., Facciolo, G.: Reliable multiscale and multiwindow stereo matching. SIAM J. Imaging Sci. 8(2), 888–915 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bukowski, R., Haynes, L., Geng, Z., Coleman, N., Santucci, A., Lam, K., Paz, A., May, R., DeVito, M.: Robot hand-eye coordination rapid prototyping environment. In: Proc. ISIR, vol. 16 (1991)

  30. Carmer, D.C., Peterson, L.M.: Laser radar in robotics. Proc. IEEE 84(2), 299–320 (1996)

    Article  Google Scholar 

  31. Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: The Confluence of Vision and Control, pp. 66–78. Springer (1998)

  32. Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  33. Chaumette, F., Hutchinson, S.: Visual servo control. ii. advanced approaches [tutorial]. IEEE Robot. Autom. Mag. 14(1), 109–118 (2007)

    Article  Google Scholar 

  34. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  35. Chen, S.: Kalman filter for robot vision: a survey. IEEE Trans. Ind. Electron. 59(11), 4409–4420 (2011)

    Article  Google Scholar 

  36. Chen, Z., Huang, X.: End-To-End learning for lane keeping of self-driving cars. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1856–1860. IEEE (2017)

  37. Chesi, G., Hashimoto, K., Prattichizzo, D., Vicino, A.: Keeping features in the field of view in eye-in-hand visual servoing: a switching approach. IEEE Trans. Robot. 20(5), 908–914 (2004)

    Article  Google Scholar 

  38. Chesi, G., Hung, Y.S.: Global path-planning for constrained and optimal visual servoing. IEEE Trans. Robot. 23(5), 1050–1060 (2007)

    Article  Google Scholar 

  39. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

  40. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, pp. 539–546. IEEE (2005)

  41. Chu, F.J., Xu, R., Vela, P.A.: Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 3(4), 3355–3362 (2018)

    Article  Google Scholar 

  42. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-Column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649. IEEE (2012)

  43. Collewet, C., Chaumette, F.: Positioning a camera with respect to planar objects of unknown shape by coupling 2-d visual servoing and 3-d estimations. IEEE Trans. Robot. Autom. 18(3), 322–333 (2002)

    Article  Google Scholar 

  44. Collewet, C., Marchand, E.: Photometric visual servoing. IEEE Trans. Robot. 27(4), 828–834 (2011)

    Article  Google Scholar 

  45. Crétual, A., Chaumette, F.: Visual servoing based on image motion. Int. J. Robot. Res. 20(11), 857–877 (2001)

    Article  Google Scholar 

  46. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del Solar, J.: Using convolutional neural networks in robots with limited computational resources: Detecting Nao robots while playing soccer. In: Robot World Cup, pp. 19–30. Springer (2017)

  47. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, pp. 886–893. IEEE (2005)

  48. De Luca, A., Oriolo, G., Giordano, P.R.: On-line estimation of feature depth for image-based visual servoing schemes. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2823–2828. IEEE (2007)

  49. Delabarre, B., Marchand, E.: Visual servoing using the sum of conditional variance. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1689–1694. IEEE (2012)

  50. Djuknic, G.M., Freidenfelds, J., Okunev, Y.: Establishing wireless communications services via high-altitude aeronautical platforms: A concept whose time has come? IEEE Commun. Mag. 35(9), 128–135 (1997)

    Article  Google Scholar 

  51. Dos Santos, M.M., De Giacomo, G.G., Drews-Jr, P.L., Botelho, S.S.: Matching color aerial images and underwater sonar images using deep learning for underwater localization. IEEE Robot. Autom. Lett. 5(4), 6365–6370 (2020)

    Article  Google Scholar 

  52. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An Image is Worth 16X16 Words: Transformers for image recognition at scale. In: ICLR 2021: The Ninth International Conference on Learning Representations (2021)

  53. Drews, P.L., Neto, A.A., Campos, M.F.: Hybrid unmanned aerial underwater vehicle: Modeling and simulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4637–4642. IEEE (2014)

  54. Durdevic, P., Ortiz-Arroyo, D.: A deep neural network sensor for visual servoing in 3d spaces. Sensors 20(5), 1437 (2020)

    Article  Google Scholar 

  55. Durdevic, P., Ortiz-Arroyo, D., Li, S., Yang, Z.: Uav visual servoing navigation in sparsely populated environments. In: Proceedings of the 15th European Workshop on Advanced Control and Diagnosis, ACD (2019)

  56. Durdevic, P., Ortiz-Arroyo, D., Li, S., Yang, Z.: Vision aided navigation of a quad-rotor for autonomous wind-farm inspection. IFAC-PapersOnLine 52(8), 61–66 (2019)

    Article  Google Scholar 

  57. Durdevic, P., Ortiz-Arroyo, D., Yang, Z.: Lidar assisted camera inspection of wind turbines: experimental study. In: 2019 1St International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), pp. 1–7. IEEE (2019)

  58. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)

    Article  Google Scholar 

  59. Flandin, G., Chaumette, F., Marchand, E.: Eye-in-hand/eye-to-hand cooperation for visual servoing. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 3, pp. 2741–2746. IEEE (2000)

  60. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

  61. Geirhos, R., Janssen, D.H.J., Schütt, H.H., Rauber, J., Bethge, M., Wichmann, F.A.: Comparing deep neural networks against humans: object recognition when the signal gets weaker. arXiv:abs/1706.06969 (2017)

  62. Gemerek, J., Ferrari, S., Wang, B.H., Campbell, M.E.: Video-guided camera control for target tracking and following. IFAC-PapersOnLine 51(34), 176–183 (2019)

    Article  Google Scholar 

  63. Giusti, A., Guzzi, J., Cireşan, D.C., He, F.L., Rodríguez, J.P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G., et al.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667 (2015)

    Article  Google Scholar 

  64. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

  65. Gomariz, A., Li, W., Ozkan, E., Tanner, C., Goksel, O.: Siamese networks with location prior for landmark tracking in liver ultrasound sequences. In: 2019 IEEE 16Th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1757–1760. IEEE (2019)

  66. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

  67. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. arXiv:1406.2661 (2014)

  68. Goswami, J.C., Chan, A.K.: Fundamentals of wavelets: theory, algorithms, and applications, vol. 233, John Wiley & Sons (2011)

  69. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. arXiv:1706.04599 (2017)

  70. Gustafsson, F.: Statistical sensor fusion. Studentlitteratur (2010)

  71. Hager, G.D., Chang, W.C., Morse, A.S.: Robot hand-eye coordination based on stereo vision. IEEE Control. Syst. Mag. 15(1), 30–39 (1995)

    Article  Google Scholar 

  72. Han, J., Cho, Y., Kim, J., Kim, J., Son, N.S., Kim, S.Y.: Autonomous collision detection and avoidance for aragon usv: development and field tests. J. Field Robot. 37(6), 987–1002 (2020)

    Article  Google Scholar 

  73. Hashimoto, K., Kimura, H.: Visual servoing with nonlinear observer. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 484–489. IEEE (1995)

  74. Hashimoto, K., Noritsugu, T.: Visual servoing with linearized observer. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 1, pp. 263–268. IEEE (1999)

  75. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  76. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv:1610.02136 (2016)

  77. Hinton, G., Sabour, S., Frosst, N.: Matrix capsules with em routing. https://openreview.net/pdf?id=HJWLfGWRb (2018)

  78. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 2, pp. 807–814. IEEE (2005)

  79. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  80. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

  81. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  82. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

  83. Huang, P., Wang, D., Meng, Z., Zhang, F., Liu, Z.: Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE ASME Trans. Mechatron. 21(5), 2260–2271 (2016)

    Article  Google Scholar 

  84. Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  85. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv:1602.07360(2016)

  86. James, S., Davison, A.J., Johns, E.: Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task. arXiv:1707.02267 (2017)

  87. Janabi-Sharifi, F., Marey, M.: A kalman-filter-based method for pose estimation in visual servoing. IEEE Trans. Robot. 26(5), 939–947 (2010)

    Article  Google Scholar 

  88. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition?. In: 2009 IEEE 12Th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)

  89. Jeon, H.G., Lee, J.Y., Im, S., Ha, H., So Kweon, I.: Stereo matching with color and monochrome cameras in low-light conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4086–4094 (2016)

  90. Joo, S.H., Manzoor, S., Rocha, Y.G., Lee, H.U., Kuc, T.Y.: A realtime autonomous robot navigation framework for human like high-level interaction and task planning in global dynamic environment. arXiv:1905.12942 (2019)

  91. Jung, S., Cho, S., Lee, D., Lee, H., Shim, D.H.: . A direct visual servoing-based framework for the 2016 iros autonomous drone racing challenge 35, 146–166 (2018). https://doi.org/10.1002/rob.21743

    Google Scholar 

  92. Kahn, G., Abbeel, P., Levine, S.: Badgr: an autonomous self-supervised learning-based navigation system. IEEE Robot. Autom. Lett. 6(2), 1312–1319 (2021)

    Article  Google Scholar 

  93. Kalal, Z., Mikolajczyk, K., Matas, J.: Face-Tld: Tracking-learning-detection applied to faces. In: 2010 IEEE International Conference on Image Processing, pp. 3789–3792. IEEE (2010)

  94. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for uavs: Current developments and trends. J. Intell. Robot. Syst. 87(1), 141–168 (2017)

    Article  Google Scholar 

  95. Karras, G.C., Kyriakopoulos, K.J.: Visual servo control of an underwater vehicle using a laser vision system. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4116–4122 (2008)

  96. Ke, F., Li, Z., Xiao, H., Zhang, X.: Visual servoing of constrained mobile robots based on model predictive control. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(7), 1428–1438 (2016)

    Article  Google Scholar 

  97. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision?. In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

  98. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, pp. 1–62 (2019)

  99. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: A survey (2021)

  100. Kim, W., Seok, J.: Indoor semantic segmentation for robot navigating on mobile. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 22–25. IEEE (2018)

  101. Kocić, J., Jovičić, N., Drndarević, V.: An end-to-end deep neural network for autonomous driving designed for embedded automotive platforms. Sensors 19(9), 2064 (2019)

    Article  Google Scholar 

  102. Kolodziej, K.W., Hjelm, J.: Local positioning systems: LBS applications and services. CRC press (2017)

  103. Kragic, D., Christensen, H.I., et al.: Survey on visual servoing for manipulation. Computational Vision and Active Perception Laboratory, Fiskartorpsv 15, 2002 (2002)

    Google Scholar 

  104. Krishnan, D., Fergus, R.: Dark flash photography. ACM Trans. Graph. 28(3), 96 (2009)

    Article  Google Scholar 

  105. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  106. Kumra, S., Kanan, C.: Robotic grasp detection using deep convolutional neural networks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 769–776. IEEE (2017)

  107. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

  108. Lampe, T., Riedmiller, M.: Acquiring visual servoing reaching and grasping skills using neural reinforcement learning. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. https://doi.org/10.1109/IJCNN.2013.6707053 (2013)

  109. Le Pennec, T., Jridi, M., Dezan, C., Alfalou, A., Florin, F.: Underwater exploration by Auv using deep neural network implemented on Fpga. In: Pattern Recognition and Tracking XXXI, vol. 11400, pp. 114000N. International Society for Optics and Photonics (2020)

  110. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  111. LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Muller, U.A., Sackinger, E., Simard, P., et al.: Learning algorithms for classification: a comparison on handwritten digit recognition. Neural Networks: The Statistical Mechanics Perspective 261, 276 (1995)

    Google Scholar 

  112. Lee, A.: Comparing deep neural networks and traditional vision algorithms in mobile robotics. Swarthmore University (2015)

  113. Lee, J., Jeong, M.H., Lee, J., Kim, K.: You, B.J.: 3d pose tracking using particle filter with back projection-based sampling. Int. J. of Control, Auto. Syst. 10(6), 1232–1239 (2012)

    Article  Google Scholar 

  114. Leiva, F., Cruz, N., Bugueño, I., Ruiz-del Solar, J.: Playing soccer without colors in the Spl: a convolutional neural network approach. In: Robot World Cup, pp. 122–134. Springer (2018)

  115. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222–1230 (2017)

  116. Li, Y., Hao, Z., Lei, H.: Survey of convolutional neural network. J. Comput. Appl. 36(9), 2508–2515 (2016)

    Google Scholar 

  117. Liang, X., Wang, H., Chen, W.: Adaptive image-based visual servoing of wheeled mobile robots with fixed camera configuration. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6199–6204. IEEE (2014)

  118. Lin, C., Wang, H., Yuan, J., Yu, D., Li, C.: An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance. Ocean Eng. 189, 106327 (2019)

    Article  Google Scholar 

  119. Lippiello, V., Fontanelli, G.A., Ruggiero, F.: Image-based visual-impedance control of a dual-arm aerial manipulator. IEEE Robot. Autom. Lett. 3(3), 1856–1863 (2018)

    Article  Google Scholar 

  120. Lippiello, V., Siciliano, B., Villani, L.: Visual motion estimation of 3D objects: an adaptive extended kalman filter approach. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 1, pp. 957–962. IEEE (2004)

  121. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD: single shot multibox detector. arXiv:abs/1512.02325 (2015)

  122. Loquercio, A., Maqueda, A.I., Del-Blanco, C.R., Scaramuzza, D.: Dronet: Learning to fly by driving. IEEE Robot. Autom. Lett. 3(2), 1088–1095 (2018)

    Article  Google Scholar 

  123. Lots, J.F., Lane, D., Trucco, E.: Application of 2 1/2 d visual servoing to underwater vehicle station-keeping. In: OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158), vol. 2, pp. 1257–1264. IEEE (2000)

  124. Loy, J.: Neural Network Projects with python: The ultimate guide to using Python to explore the true power of neural networks through six projects. Packt Publishing Ltd (2019)

  125. Loy, J.: Neural Network Projects with python: The ultimate guide to using Python to explore the true power of neural networks through six projects. Packt Publishing Ltd (2019)

  126. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5695–5703 (2016)

  127. MacKay, D.J.: A practical bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992)

    Article  Google Scholar 

  128. Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J.A., Goldberg, K.: Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv:1703.09312 (2017)

  129. Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE Trans. Robot. Autom. 15(2), 238–250 (1999)

    Article  Google Scholar 

  130. Marchand, E.: Subspace-based direct visual servoing. IEEE Robot. Autom. Lett. 4(3), 2699–2706 (2019)

    Article  Google Scholar 

  131. Marchand, E.: Direct visual servoing in the frequency domain. IEEE Robot. Autom. Lett. 5(2), 620–627 (2020)

    Article  Google Scholar 

  132. Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Trans. Robot. 23(1), 87–100 (2007)

    Article  Google Scholar 

  133. Mebarki, R., Lippiello, V., Siciliano, B.: Nonlinear visual control of unmanned aerial vehicles in gps-denied environments. IEEE Trans. Robot. 31(4), 1004–1017 (2015)

    Article  Google Scholar 

  134. Mejias, L., Campoy, P., Saripalli, S., Sukhatme, G.S.: A visual servoing approach for tracking features in urban areas using an autonomous helicopter. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp. 2503–2508. IEEE (2006)

  135. Menfoukh, K., Touba, M.M., Khenfri, F., Guettal, L.: Optimized convolutional neural network architecture for Uav navigation within unstructured trail. In: 020 1St International Conference on Communications, Control Systems and Signal Processing (CCSSP), pp. 211–214. IEEE (2020)

  136. Mercado, D., Maia, M., Diez, F.J.: Aerial-underwater systems, a new paradigm in unmanned vehicles. J. Intell. Robot. Syst. 95(1), 229–238 (2019)

    Article  Google Scholar 

  137. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning:, A survey. arXiv:2001.05566 (2020)

  138. Mitchell, T.M., et al.: Machine learning (1997)

  139. Morrison, D., Corke, P., Leitner, J.: Learning robust, real-time, reactive robotic grasping. Int. J. Robot. Res. 39(2-3), 183–201 (2020)

    Article  Google Scholar 

  140. Muller, U., Ben, J., Cosatto, E., Flepp, B., Cun, Y.L.: Off-Road obstacle avoidance through end-to-end learning. In: Advances in Neural Information Processing Systems, pp. 739–746 (2006)

  141. Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking. Journal of Robotics and Mechatronics 28(4), 543–558 (2016)

    Article  Google Scholar 

  142. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

  143. Neal, R.M.: Bayesian Learning for Neural Networks. Ph.D. thesis, University of Toronto (1995)

  144. Nocks, L.: The robot: the life story of a technology. Greenwood Publishing Group (2007)

  145. Ourak, M., Tamadazte, B., Lehmann, O., Andreff, N.: Direct visual servoing using wavelet coefficients. IEEE/ASME Transactions on Mechatronics 24(3), 1129–1140 (2019)

    Article  Google Scholar 

  146. Padhy, R.P., Verma, S., Ahmad, S., Choudhury, S.K., Sa, P.K.: Deep neural network for autonomous uav navigation in indoor corridor environments. Procedia Comput. Sci. 133, 643–650 (2018)

    Article  Google Scholar 

  147. Pedersen, O.M., Misimi, E., Chaumette, F.: Grasping unknown objects by coupling deep reinforcement learning, generative adversarial networks, and visual servoing. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 5655–5662. IEEE (2020)

  148. Penza, V., Salerno, D., Acemoglu, A., Ortiz, J., Mattos, L.S.: Hybrid visual servoing for autonomous robotic laser tattoo removal. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4461–4466. IEEE (2019)

  149. Pestana, J., Sanchez-Lopez, J.L., Campoy, P., Saripalli, S.: Vision based Gps-denied object tracking and following for unmanned aerial vehicles. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. IEEE (2013)

  150. Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network. In: Advances in Neural Information Processing Systems, pp. 305–313 (1989)

  151. Pomerleau, D.A.: Efficient training of artificial neural networks for autonomous navigation. Neural Comput. 3(1), 88–97 (1991)

    Article  Google Scholar 

  152. Qiu, Y., Li, B., Shi, W., Zhang, X.: Visual servo tracking of wheeled mobile robots with unknown extrinsic parameters. IEEE Trans. Ind. Electron. 66(11), 8600–8609 (2019)

    Article  Google Scholar 

  153. Raja, R., Kumar, S.: A hybrid image based visual servoing for a manipulator using kinect. In: Proceedings of the Advances in Robotics, pp. 1–5 (2017)

  154. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv:1710.05941 (2017)

  155. Ramezani Dooraki, A., Lee, D.J.: An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in unknown environments. Sensors 18(10), 3575 (2018)

    Article  Google Scholar 

  156. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-Net: Imagenet classification using binary convolutional neural networks. In: European Conference on Computer Vision, pp. 525–542. Springer (2016)

  157. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. arXiv:abs/1506.02640 (2015)

  158. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

  159. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv:abs/1804.02767(2018)

  160. Rizzi, A.A., Koditschek, D.E.: Preliminary experiments in spatial robot juggling. In: Experimental Robotics II, pp. 282–298. Springer (1993)

  161. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

  162. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  163. Sadeghi, F.: Divis: Domain invariant visual servoing for collision-free goal reaching. In: Bicchi, A., Kress-Gazit, H., Hutchinson, S. (eds.) Robotics: Science and Systems XV, University of Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019. https://doi.org/10.15607/RSS.2019.XV.055 (2019)

  164. Said, T., Ghoniemy, S., Karam, O.: Real-time multi-object detection and tracking for autonomous robots in uncontrolled environments. In: 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), pp. 67–72. IEEE (2012)

  165. Salehian, M., RayatDoost, S., Taghirad, H.: Robust unscented kalman filter for visual servoing system. In: The 2Nd International Conference on Control, Instrumentation and Automation, pp. 1006–1011. IEEE (2011)

  166. Samson, C., Espiau, B., Borgne, M.L.: Robot control: the task function approach. Oxford University Press Inc (1991)

  167. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

  168. Santamaria-Navarro, A., Andrade-Cetto, J., Lippiello, V.: Visual servoing of aerial manipulators. In: Aerial Robotic Manipulation, pp. 191–202. Springer (2019)

  169. Saxena, A., Pandya, H., Kumar, G., Gaud, A., Krishna, K.M.: Exploring convolutional networks for end-to-end visual servoing. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3817–3823. IEEE (2017)

  170. Schramm, F., Morel, G., Micaelli, A., Lottin, A.: Extended-2D visual servoing. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, Vol. 1, pp. 267–273. IEEE (2004)

  171. Shademan, A., Janabi-Sharifi, F.: Sensitivity analysis of ekf and iterated ekf pose estimation for position-based visual servoing. In: Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005., pp. 755–760. IEEE (2005)

  172. Sharma, R., Hutchinson, S.: Motion perceptibility and its application to active vision-based servo control. IEEE Trans. Robot. Autom. 13(4), 607–617 (1997)

    Article  Google Scholar 

  173. Shepard, A.J., Wang, B., Foo, T.K., Bednarz, B.P.: A block matching based approach with multiple simultaneous templates for the real-time 2d ultrasound tracking of liver vessels. Med. Phys. 44(11), 5889–5900 (2017)

    Article  Google Scholar 

  174. Simon, D.: Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons (2006)

  175. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  176. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robotics and Autonomous systems 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  177. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer using convolutional neural networks. In: Robot World Cup, pp. 19–30. Springer (2016)

  178. Stokkeland, M., Klausen, K., Johansen, T.A.: Autonomous visual navigation of unmanned aerial vehicle for wind turbine inspection. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 998–1007. IEEE (2015)

  179. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  180. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  181. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

  182. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

  183. Thomas, C.: Sensor Fusion - Foundation and Applications. InTech (2011)

  184. Thomas, J., Loianno, G., Sreenath, K., Kumar, V.: Toward image based visual servoing for aerial grasping and perching. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2113–2118. IEEE (2014)

  185. Thornton, J., Grace, D., Spillard, C., Konefal, T., Tozer, T.: Broadband communications from a high-altitude platform: the european helinet programme. Elect. Commun. Eng. J 13(3), 138–144 (2001)

    Article  Google Scholar 

  186. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. Intelligent robotics and autonomous agents. MIT Press (2005)

  187. Thuilot, B., Martinet, P., Cordesses, L., Gallice, J.: Position based visual servoing: keeping the object in the field of vision. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2, pp. 1624–1629. IEEE (2002)

  188. Usher, K., Ridley, P., Corke, P.: Visual servoing of a car-like vehicle-an application of omnidirectional vision. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Vol. 3, pp. 4288–4293. IEEE (2003)

  189. Vaillant, R., Monrocq, C., Le Cun, Y.: Original approach for the localisation of objects in images. IEE Proceedings-Vision, Image and Signal Processing 141(4), 245–250 (1994)

    Article  Google Scholar 

  190. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, Pp. 5998–6008 (2017)

  191. Vicente, P., Jamone, L., Bernardino, A.: Towards markerless visual servoing of grasping tasks for humanoid robots. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3811–3816. IEEE (2017)

  192. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

  193. Wang, H., Guo, D., Liang, X., Chen, W., Hu, G., Leang, K.K.: Adaptive vision-based leader–follower formation control of mobile robots. IEEE Trans. Ind. Electron. 64(4), 2893–2902 (2016)

    Article  Google Scholar 

  194. Wang, H., Liu, Y.H., Chen, W., Wang, Z.: A new approach to dynamic eye-in-hand visual tracking using nonlinear observers. IEEE/ASME Transactions on Mechatronics 16(2), 387–394 (2010)

    Article  Google Scholar 

  195. Wang, H., Yang, B., Liu, Y., Chen, W., Liang, X., Pfeifer, R.: Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Transactions on Mechatronics 22(1), 41–50 (2016)

    Article  Google Scholar 

  196. Wells, G., Venaille, C., Torras, C.: Vision-based robot positioning using neural networks. Image Vis. Comput. 14(10), 715–732 (1996)

    Article  Google Scholar 

  197. Wilson, W.J., Hulls, C.W., Bell, G.S.: Relative end-effector control using cartesian position based visual servoing. IEEE Trans. Robot. Autom. 12(5), 684–696 (1996)

    Article  Google Scholar 

  198. Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Tomizuka, M., Keutzer, K., Vajda, P.: Visual transformers: Token-based image representation and processing for computer vision. arXiv:abs/2006.03677 (2020)

  199. Xu, C., He, J., Zhang, X., Zhou, X., Duan, S.: Towards human motion tracking: multi-sensory imu/toa fusion method and fundamental limits. Electronics 8(2), 142 (2019)

    Article  Google Scholar 

  200. Xu, Q., Zhang, C., Zhang, L.: Deep Convolutional Neural Network Based Unmanned Surface Vehicle Maneuvering. In: 2017 Chinese Automation Congress (CAC), pp. 878–881. IEEE (2017)

  201. Yan, Z., Guo, Y., Zhang, C.: Deep defense: Training dnns with improved adversarial robustness. arXiv:1803.00404 (2018)

  202. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3d path planning algorithms. Journal of Control Science and Engineering 2016 (2016)

  203. Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam, H.: Netadapt: Platform-aware neural network adaptation for mobile applications. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 285–300 (2018)

  204. Yu, C., Cai, Z., Pham, H., Pham, Q.C.: Siamese convolutional neural network for sub-millimeter-accurate camera pose estimation and visual servoing. arXiv:1903.04713 (2019)

  205. Zarudzki, M., Shin, H.S., Lee, C.H.: An image based visual servoing approach for multi-target tracking using an quad-tilt rotor Uav. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 781–790. IEEE (2017)

  206. Zereik, E., Sorbara, A., Casalino, G., Didot, F.: Autonomous dual-arm mobile manipulator crew assistant for surface operations: Force/Vision-Guided grasping. In: 2009 4th International Conference on Recent Advances in Space Technologies, pp. 710–715. IEEE (2009)

  207. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Information Fusion 42, 146–157 (2018)

    Article  Google Scholar 

  208. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

  209. Zhao, C., Sun, Q., Zhang, C., Tang, Y., Qian, F.: Monocular depth estimation based on deep learning: an overview. Sci. China Technol. Sci. 63(9), 1612–1627 (2020). https://doi.org/10.1007/s11431-020-1582-8

    Article  Google Scholar 

  210. Zheng, D., Wang, H., Wang, J., Chen, S., Chen, W., Liang, X.: Image-based visual servoing of a quadrotor using virtual camera approach. IEEE/ASME Trans.Mechatron. 22(2), 972–982 (2016)

    Article  Google Scholar 

  211. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakariae Machkour.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machkour, Z., Ortiz-Arroyo, D. & Durdevic, P. Classical and Deep Learning based Visual Servoing Systems: a Survey on State of the Art. J Intell Robot Syst 104, 11 (2022). https://doi.org/10.1007/s10846-021-01540-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01540-w

Keywords