Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An Improved Adaptive Super-Twisting Momentum Observer to Estimate External Torque for a Robot Manipulator

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Physical collaboration between humans and robots is the inevitable result of future robot development. Ensuring human safety is the most fundamental guarantee. Both dynamic impact and quasi-static clamping are potentially dangerous. External torque should be detected as sensitively as possible. This paper combines insights from the super-twisting algorithm and robot momentum observer to introduce an improved adaptive super-twisting momentum observer. It is for efficient external torque estimation in the case of a proprioceptive sensor (encoder) based only. The observer is based on a super-twisting momentum observer that first uses a Sigmoid function to reduce jitter. Then a proportional-integral observer structure is adopted to increase the observation speed. Finally, coping with real-time changeable external torque input through a constructed parameter adaptive law. The observer provides a quick and reliable estimation of external torque. The proposed method was illustrated with simulation and hardware experiments with a 7-degree-of-freedom collaborative robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request. The data used to support the findings of this study are included within the article

Code Availability

The code that supports the fndings of this article is available from the corresponding author upon reasonable request.

References

  1. Heinzmann, J., Zelinsky, A.: Quantitative safety guarantees for physical human-robot interaction. Int. J. Robot. Res. 22(7-8), 479–504 (2003)

    Article  Google Scholar 

  2. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for safe robots: measurements, analysis and new insights. Int. J. Robot. Res. 28(11-12), 1507–1527 (2009)

    Article  Google Scholar 

  3. Haddadin, S., De Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017)

    Article  Google Scholar 

  4. Ren, T., Dong, Y., Wu, D., Chen, K.: Collision detection and identification for robot manipulators based on extended state observer. Control. Eng. Pract. 79, 144–153 (2018)

    Article  Google Scholar 

  5. Moe, S., Rustad, A.M., Hanssen, K.G.: Machine Learning in Control Systems: an Overview of the State of the Art, pp 250–265. Springer, Berlin (2018)

    Google Scholar 

  6. Birjandi, S.A.B., Kühn, J., Haddadin, S.: Observer-extended direct method for collision monitoring in robot manipulators using proprioception and imu sensing. IEEE Robot. Autom. Lett. 5(2), 954–961 (2020)

    Article  Google Scholar 

  7. Yogeswaran, N., et al.: New materials and advances in making electronic skin for interactive robots. Adv. Robot. 29(21), 1359–1373 (2015)

    Article  Google Scholar 

  8. Zhang, T., Ge, P., Zou, Y., He, Y.: Robot collision detection without external sensors based on time-series analysis. J. Dyn. Syst. Meas. Control. 143(4) (2021)

  9. Sharkawy, A.-N., Koustoumpardis, P.N., Aspragathos, N.A.: Manipulator Collision Detection and Collided Link Identification Based on Neural Networks, pp 3–12. Springer, Berlin (2018)

    Google Scholar 

  10. Park, K.M., Kim, J., Park, J., Park, F.C.: Learning-based real-time detection of robot collisions without joint torque sensors. IEEE Robot. Autom. Lett. 6(1), 103–110 (2020)

    Article  Google Scholar 

  11. Chen, C., Huang, J., Wu, D., Tu, X.: Interval type-2 fuzzy disturbance observer based ts fuzzy control for a pneumatic flexible joint. IEEE Trans. Ind. Electron. (2021)

  12. Ito, H., Yamamoto, K., Mori, H., Ogata, T.: Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control. Sci. Robot. 7(65), eaax8177 (2022)

    Article  Google Scholar 

  13. Chen, W.-H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods—an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2015)

    Article  Google Scholar 

  14. Han, J.: From pid to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  15. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control. 50(11), 1785–1789 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Su, J., Chen, W.-H., Li, B.: Disturbance Observer Based Fault Diagnosis, pp 3024–3029. IEEE, Piscataway (2014)

    Google Scholar 

  17. Cao, P., Gan, Y., Dai, X.: Finite-time disturbance observer for robotic manipulators. Sensors 19(8), 1943 (2019)

    Article  Google Scholar 

  18. Caudill, J.S., Harvey, M.B., Ashok, R.S.: An overview of satellite formation control using higher order and adaptive sliding mode control techniques. IEEE SOUTHEASTCON 2014:1–6 (2014)

  19. De Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision Detection and Safe Reaction with the Dlr-iii Lightweight Manipulator Arm, pp 1623–1630. IEEE, Piscataway (2006)

    Google Scholar 

  20. Han, L., Xu, W., Li, B., Kang, P.: Collision detection and coordinated compliance control for a dual-arm robot without force/torque sensing based on momentum observer. IEEE/ASME Trans. Mechatronics 24(5), 2261–2272 (2019)

    Article  Google Scholar 

  21. Haddadin, S., Albu-Schaffer, A., De Luca, A., Hirzinger, G.: Collision detection and reaction: a contribution to safe physical human-robot interaction, pp 3356–3363. IEEE, Piscataway (2008)

    Google Scholar 

  22. Zhang, X., Zhao, J., Zhang, M., Liu, X.: Disturbance recognition and collision detection of manipulator based on momentum observer. Sensors 20(15), 4187 (2020)

    Article  Google Scholar 

  23. Wu, H., Li, S., Wu, G., et al.: Collision detection algorithm for robot manipulator based on momentum deviation observer. Electr. Mach. Control. 19(5), 97–104 (2015)

    Google Scholar 

  24. Guo, M., Zhang, H., Feng, C., Liu, M., Huo, J.: Manipulator residual estimation and its application in collision detection. Industrial robot: an international journal (2018)

  25. Birjandi, S.A.B., Haddadin, S.: Model-adaptive high-speed collision detection for serial-chain robot manipulators. IEEE Robot. Autom. Lett. 5(4), 6544–6551 (2020)

    Article  Google Scholar 

  26. Heo, Y.J., et al.: Collision detection for industrial collaborative robots: A deep learning approach. IEEE Robot. Autom. Lett. 4(2), 740–746 (2019)

    Article  Google Scholar 

  27. Wahrburg, A., Morara, E., Cesari, G., Matthias, B., Ding, H.: Cartesian Contact Force Estimation for Robotic Manipulators using Kalman Filters and the Generalized Momentum, pp 1230–1235. IEEE, Piscataway (2015)

    Google Scholar 

  28. Han, L., Mao, J., Cao, P., Gan, Y., Li, S.: Towards sensorless interaction force estimation for industrial robots using high-order finite-time observers. IEEE Trans. Ind. Electron. (2021)

  29. Garofalo, G., Mansfeld, N., Jankowski, J., Ott, C.: Sliding Mode Momentum Observers for Estimation of External Torques and Joint Acceleration, pp 6117–6123. IEEE, Piscataway (2019)

    Google Scholar 

  30. Haddadin, S., et al.: The franka emika robot: a reference platform for robotics research and education. IEEE Robot. Autom. Mag. (2022)

  31. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control. 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moreno, J.A., Osorio, M.: Strict lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control. 57(4), 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hu, S.: Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl. 154(2), 377–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moreno, J.A., Osorio, M.: A Lyapunov Approach to Second-Order Sliding Mode Controllers and Observers, pp 2856–2861. IEEE, Piscataway (2008)

    Google Scholar 

  35. Shtessel, Y., Taleb, M., Plestan, F.A.: novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Chen, J., Yan, F., Zhu, K., Chen, B.: Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. ISA Trans. 86, 163–180 (2019)

    Article  Google Scholar 

  37. Benzaouia, S., et al.: Design and implementation details of a low cost sensorless emulator for variable speed wind turbines. Sustain. Energy Grids Netw. 26, 100431 (2021)

    Article  Google Scholar 

  38. Levant, A., Livne, M.: Robust exact filtering differentiators. Eur. J. Control. 55, 33–44 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, D., Li, S., Wu, Q.: A novel supertwisting zeroing neural network with application to mobile robot manipulators. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1776–1787 (2020)

    Article  MathSciNet  Google Scholar 

  40. Hu, Q., Li, B., Qi, J.: Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerosp. Sci. Technol. 39, 13–21 (2014)

    Article  Google Scholar 

  41. De Luca, A., Mattone, R.: Actuator Failure Detection and Isolation using Generalized Momenta, vol. 1, pp 634–639. IEEE, Piscataway (2003)

    Google Scholar 

  42. De Luca, A., Mattone, R.: Sensorless Robot Collision Detection and Hybrid Force/Motion Control, pp 999–1004. IEEE, Piscataway (2005)

    Google Scholar 

  43. Shao, X., Wang, H.: Back-stepping robust trajectory linearization control for hypersonic reentry vehicle via novel tracking differentiator. J. Franklin Inst. 353(9), 1957–1984 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman, L.M., Poznyak, A.S.: Super-Twisting Adaptive Sliding Mode Control: a Lyapunov Design, pp 5109–5113. IEEE, Piscataway (2010)

    Google Scholar 

  45. Ikuta, K., Ishii, H., Nokata, M.: Safety evaluation method of design and control for human-care robots. Int. J. Robot. Res. 22(5), 281–297 (2003)

    Article  Google Scholar 

  46. Rosenstrauch, M.J., Krüger, J.: Safe human-robot-collaboration-introduction and experiment using iso/ts 15066, pp 740–744. IEEE, Piscataway (2017)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China under Grant 62263004, the Fundamental Ability Enhancement Poject for Young and Middle-aged University Teachers in Guangxi Province (2021KY0793), the National Nature Science Foundation of China under Grant 61863008, and the Key Research and Development Program of Guangxi (No.AB21196066).

Author information

Authors and Affiliations

Authors

Contributions

Shike Long: Conceptualization, Writing - original draft, Data curation, Formal analysis, Validation. Xuanju Dang: Conceptualization, Writing – review & editing, Data curation, Formal analysis, Validation. Shanlin Sun: Data curation, Formal analysis, Validation.

Corresponding author

Correspondence to Xuanju Dang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, S., Dang, X. & Sun, S. An Improved Adaptive Super-Twisting Momentum Observer to Estimate External Torque for a Robot Manipulator. J Intell Robot Syst 107, 25 (2023). https://doi.org/10.1007/s10846-023-01814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01814-5

Keywords