Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we propose two sets of theoretically filtered bound-factor constraints for constructing reformulation-linearization technique (RLT)-based linear programming (LP) relaxations for solving polynomial programming problems. We establish related theoretical results for convergence to a global optimum for these reduced sized relaxations, and provide insights into their relative sizes and tightness. Extensive computational results are provided to demonstrate the relative effectiveness of the proposed theoretical filtering strategies in comparison to the standard RLT and a prior heuristic filtering technique using problems from the literature as well as randomly generated test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  Google Scholar 

  2. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  Google Scholar 

  3. Applegate, D., Dash, S., Cook, W., Espinoza, D.: QSopt_ex. www.dii.uchile.cl/~daespino

  4. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)

    Article  Google Scholar 

  5. Cafieri, S., Hansen, P., Létocart, L., Liberti, L., Messine, F.: Compact relaxations for polynomial programming problems. In: Klasing, R. (ed.) Experimental Algorithms, Lecture Notes in Computer Science, vol. 7276, pp. 75–86. Springer, Berlin (2012)

    Google Scholar 

  6. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  Google Scholar 

  7. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  8. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1981)

    Book  Google Scholar 

  9. ILOG Cplex 12.3: Reference manual, 2012. http://www.ilog.com/products/cplex

  10. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  Google Scholar 

  11. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  Google Scholar 

  12. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  Google Scholar 

  13. Liberti, L.: Linearity embedded in nonconvex programs. J. Glob. Optim. 33, 157–196 (2005)

    Article  Google Scholar 

  14. Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36, 161–189 (2006)

    Article  Google Scholar 

  15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  Google Scholar 

  16. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I–Convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  17. Nataraj, P.S.V., Arounassalame, M.: Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm. J. Glob. Optim. 49(2), 185–212 (2011)

    Article  Google Scholar 

  18. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10(4), 425–437 (1997)

    Article  Google Scholar 

  19. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

    Google Scholar 

  20. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. ACTA Mathematica Vietnamica 22(1), 245–270 (1997)

    Google Scholar 

  21. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Boston (1999)

    Book  Google Scholar 

  22. Sherali, H.D., Dalkiran, E.: Combined bound-grid-factor constraints for enhancing RLT relaxations for polynomial programs. J. Glob. Optim. 51(3), 377–393 (2011)

    Article  Google Scholar 

  23. Sherali, H.D., Dalkiran, E., Desai, J.: Enhancing RLT-based relaxations for polynomial programming problems via a new class of \(v\)-semidefinite cuts. Comput. Optim. Appl. 52(2), 483–506 (2012)

    Article  Google Scholar 

  24. Sherali, H.D., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programs. J. Glob. Optim. 52(3), 447–469 (2012)

    Article  Google Scholar 

  25. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22(1–4), 233–261 (2002)

    Article  Google Scholar 

  26. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Glob. Optim. 2(1), 101–112 (1992)

    Article  Google Scholar 

  27. Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)

    Article  Google Scholar 

  28. Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89(3), 459–478 (2001)

    Article  Google Scholar 

  29. Shor, N.Z.: Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25, 163–168 (1990)

    Article  Google Scholar 

  30. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  Google Scholar 

  31. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  Google Scholar 

  32. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  Google Scholar 

  33. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: SparsePOP—A sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), 15:1–13 (2008)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Science Foundation under Grant No. CMMI-0969169. The authors also thank two anonymous referees for their constructive and insightful comments that have helped improve the substance and presentation in this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Dalkiran.

Appendix

Appendix

PP1 (Problem P1 in [17]):

$$\begin{aligned}&{\text{ Minimize}} -x_1 -x_2\\&{\text{ subject} \text{ to}} \nonumber \\&\qquad \qquad x_2 \le 2 + 2x_1^4 -8x_1^3 + 8x_1^2 \\&\qquad \qquad x_2 \le 4x_1^4 - 32 x_1^3 + 88 x_1^2 - 96 x_1 + 36 \\&\qquad \qquad 0 \le x_1 \le 3, \ \ \ 0 \le x_2 \le 4. \end{aligned}$$

PP2 (Problem 19 in [8]):

$$\begin{aligned}&{\text{ Minimize} } (x_1-10)^3 + (x_2-20)^3\\&{\text{ subject} \text{ to}} \nonumber \\&\qquad \qquad (x_1-5)^2 + (x_2 -5)^2 \ge 100 \\&\qquad \qquad -(x_1-6)^2 -(x_2 -5)^2 \ge -82.81 \\&\qquad \qquad 13 \le x_1 \le 100, \ \ \ 0 \le x_2 \le 100. \end{aligned}$$

PP3 (Problem P7 in [17]):

$$\begin{aligned}&{\text{ Minimize} } x_4 \\&{\text{ subject} \text{ to}} \nonumber \\&\qquad \qquad x_1^4x_2^4 -x_1^4 -x_2^4x_3 = 0 \\&\qquad \qquad 1.4 - 0.25 x_4 - x_1 \le 0 \\&\qquad \qquad -1.4 - 0.25 x_4 + x_1 \le 0 \\&\qquad \qquad 1.5 - 0.2 x_4 - x_2 \le 0 \\&\qquad \qquad -1.5 - 0.2 x_4 + x_2 \le 0 \\&\qquad \qquad 0.8 -0.2 x_4 - x_3 \le 0 \\&\qquad \qquad -0.8 -0.2 x_4 + x_3 \le 0 \\&\qquad \qquad 0 \le x_j \le 5, \ \quad \forall j=1, \ldots , 4. \end{aligned}$$

PP4 (Problem P8 in [17]):

$$\begin{aligned}&{\text{ Minimize} } 54.528 x_2 x_4 + 27.264 x_1 x_3 -54.528 x_3 x_4\\&{\text{ subject} \text{ to}} \nonumber \\&\qquad \qquad 61.01627586 - I \le 0 \\&\qquad \qquad 8 x_1 - I \le 0 \\&\qquad \qquad x_1 x_2 x_4 - x_2 x_4^2 + x_1^2x_3 + x_3 x_4^2 - 2 x_1 x_3 x_4 - 3.5 x_3 I \le 0 \\&\qquad \qquad x_1 - 3 x_2 \le 0\\&\qquad \qquad 2 x_2 - x_1 \le 0 \\&\qquad \qquad x_3 -1.5 x_4 \le 0 \\&\qquad \qquad 0.5 x_4 - x_3 \le 0 \\&\qquad \qquad 3 \le x_1 \le 20, \ 2 \le x_2 \le 15,\ 0.125 \le x_3 \le 0.75,\ 0.25 \le x_4 \le 1.25, \end{aligned}$$

where \(I = 6 x_1^2x_2 x_3 - 12 x_1 x_2 x_3^2 + 8 x_2 x_3^3 + x_1^3x_4 - 6x_1^2x_3x_4 +12 x_1 x_3^2x_4 - 8 x_3^3x_4.\)

PP5 (Problem 100 in [8] - with imposed/modified variable bounds):

$$\begin{aligned}&{\text{ Minimize} } (x_1-10)^2 + 5 (x_2 - 12)^2 + (x_3-1)^4 + 3 (x_4 -11)^2 + 10 (x_5-1)^6 + \\&\qquad \qquad 7 x_6^2 + x_7^4 -4 x_6 x_7 - 10x_6 - 8 x_7 \\&{\text{ subject} \text{ to}} \nonumber \\&\qquad \qquad 127 - 2x_1^2-3 x_2^4 - (x_3-1) - 4x_4^2 - 5(x_5-1) \ge 0 \\&\qquad \qquad 282 -7x_1 -3 x_2 -10 (x_3-1)^2 -x_4 + (x_5-1) \ge 0 \\&\qquad \qquad 196 -23 x_1 - x_2^2 -6 x_6^2 + 8 x_7 \ge 0 \\&\qquad \qquad -4x_1^2 - x_2^2 + 3x_1 x_2 - 2x_3^2 - 5x_6 + 11x_7 \ge 0 \\&\qquad \qquad 0 \le x_j \le 3, \quad \forall j =1, 2, 3, 5, 6,{\text{ and} }7, \ \ 0 \le x_4 \le 5. \end{aligned}$$

PP6 (Problem 117 in [8]—with imposed variable bounds, where the parameter data is given in Table 6):

$$\begin{aligned}&{\text{ Minimize}} -\sum _{j=1}^{10} b_j x_j + \sum _{j=1}^{5} \sum _{k=1}^{5} c_{kj} x_{10+k} x_{10+j} + 2 \sum _{j=1}^{5} d_j x_{10+j}^3 \\&{\text{ subject} \text{ to}} \nonumber \\&\qquad \qquad 2 \sum _{k=1}^{5} c_{kj}x_{10+k} + 3 d_j x_{10 + j}^2 +e_j - \sum _{k=1}^{10} a_{kj} x_j \ge 0, \ j=1, \ldots , 5 \\&\qquad \qquad 0 \le x_j \le 15, \quad \forall j=1, \ldots , 15. \end{aligned}$$
Table 6 Parameter data for PP6 (Problem 117 in [8])

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalkiran, E., Sherali, H.D. Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality. J Glob Optim 57, 1147–1172 (2013). https://doi.org/10.1007/s10898-012-0024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-0024-z

Keywords