Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The exact solution of multiparametric quadratically constrained quadratic programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we present a strategy for the exact solution of multiparametric quadratically constrained quadratic programs (mpQCQPs). Specifically, we focus on multiparametric optimization problems with a convex quadratic objective function, quadratic inequality and linear equality constraints, described by constant matrices. The proposed approach is founded on the expansion of the Basic Sensitivity Theorem to a second-order Taylor approximation, which enables the derivation of the exact parametric solution of mpQCQPs. We utilize an active set strategy to implicitly explore the parameter space, based on which (i) the complete map of parametric solutions for convex mpQCQPs is constructed, and (ii) the determination of the optimal parametric solution for every feasible parameter realization reduces to a nonlinear function evaluation. Based on the presented results, we utilize the second-order approximation to the Basic Sensitivity Theorem to expand to the case of nonconvex quadratic constraints, by employing the Fritz John necessary conditions. Example problems are provided to illustrate the algorithmic steps of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acevedo, J., Pistikopoulos, E.N.: A multiparametric programming approach for linear process engineering problems under uncertainty. Ind. Eng. Chem. Res. 36(3), 717–728 (1997)

    Article  Google Scholar 

  2. Acevedo, J., Salgueiro, M.: An efficient algorithm for convex multiparametric nonlinear programming problems. Ind. Eng. Chem. Res. 42(23), 5883–5890 (2003)

    Article  Google Scholar 

  3. Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)

    Article  Google Scholar 

  4. Ahmadi-Moshkenani, P., Johansen, T.A., Olaru, S.: Combinatorial approach towards multi-parametric quadratic programming based on characterizing adjacent critical regions. IEEE Trans. Autom. Control 63, 3221–3231 (2018)

    Article  MATH  Google Scholar 

  5. Akbari, A., Barton, P.I.: An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks. J. Optim. Theory Appl. 178, 1–36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Al-Khayyal, F.A., Larsen, C., Van Voorhis, T.: A relaxation method for nonconvex quadratically constrained quadratic programs. J. Glob. Optim. 6(3), 215–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Avraamidou, S., Pistikopoulos, E.N.: Multi-parametric global optimization approach for tri-level mixed-integer linear optimization problems. J. Glob. Optim. 74, 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Avraamidou, S., Pistikopoulos, E.N.: A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems. Comput. Chem. Eng. 125, 98–113 (2019)

    Article  MATH  Google Scholar 

  10. Axehill, D., Besselmann, T., Raimondo, D.M., Morari, M.: A parametric branch and bound approach to suboptimal explicit hybrid mpc. Automatica 50(1), 240–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bansal, V., Perkins, J.D., Pistikopoulos, E.N.: Flexibility analysis and design of linear systems by parametric programming. AIChE J. 46(2), 335–354 (2000)

    Article  Google Scholar 

  12. Bansal, V., Perkins, J.D., Pistikopoulos, E.N.: Flexibility analysis and design using a parametric programming framework. AIChE J. 48(12), 2851–2868 (2002)

    Article  Google Scholar 

  13. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bemporad, A.: A multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squares. IEEE Trans. Autom. Control 60(11), 2892–2903 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear programming—the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bemporad, A., Filippi, C.: An algorithm for approximate multiparametric convex programming. Comput. Optim. Appl. 35(1), 87–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. (TOSN) 2(2), 188–220 (2006)

    Article  Google Scholar 

  19. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Borrelli, F., Bemporad, A., Morari, M.: Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boukouvala, F., Floudas, C.A.: Argonaut: Algorithms for global optimization of constrained grey-box computational problems. Optim. Lett. 11(5), 895–913 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buchberger, B., Winkler, F.: Gröbner Bases and Applications, vol. 17. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  23. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Burnak, B., Diangelakis, N.A., Katz, J., Pistikopoulos, E.N.: Integrated process design, scheduling, and control using multiparametric programming. Comput. Chem. Eng. 125, 164–184 (2019)

    Article  Google Scholar 

  25. Charitopoulos, V., Dua, V.: Explicit model predictive control of hybrid systems and multiparametric mixed integer polynomial programming. AIChE J. 62(9), 3441–3460 (2016)

    Article  Google Scholar 

  26. Charitopoulos, V.M., Papageorgiou, L.G., Dua, V.: Multi-parametric mixed integer linear programming under global uncertainty. Comput. Chem. Eng. 116, 279–295 (2018)

    Article  Google Scholar 

  27. Charitopoulos, V.M., Papageorgiou, L.G., Dua, V.: Closed-loop integration of planning, scheduling and multi-parametric nonlinear control. Comput. Chem. Eng. 122, 172–192 (2019)

    Article  Google Scholar 

  28. Cox, D., Little, J., Oshea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2013)

    Google Scholar 

  29. Darby, M.L., Nikolaou, M.: A parametric programming approach to moving-horizon state estimation. Automatica 43(5), 885–891 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Diangelakis, N.A., Pappas, I.S., Pistikopoulos, E.N.: On multiparametric/explicit nmpc for quadratically constrained problems. In: IFAC NMPC 2018, pp. 490–495. IFAC (2018)

  31. Diehl, M.: Formulation of closed-loop min–max MPC as a quadratically constrained quadratic program. IEEE Trans. Autom. Control 52(2), 339–343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Domínguez, L.F., Narciso, D.A., Pistikopoulos, E.N.: Recent advances in multiparametric nonlinear programming. Comput. Chem. Eng. 34(5), 707–716 (2010)

    Article  Google Scholar 

  33. Domínguez, L.F., Pistikopoulos, E.N.: A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems. AIChE J. 59(2), 483–495 (2013)

    Article  Google Scholar 

  34. Dua, V., Bozinis, N.A., Pistikopoulos, E.N.: A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26(4–5), 715–733 (2002)

    Article  Google Scholar 

  35. Dua, V., Papalexandri, K.P., Pistikopoulos, E.N.: Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30(1), 59–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dua, V., Pistikopoulos, E.N.: Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems. Ind. Eng. Chem. Res. 38(10), 3976–3987 (1999)

    Article  Google Scholar 

  37. Dua, V., Pistikopoulos, E.N.: An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 99(1–4), 123–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Faísca, N.P., Kosmidis, V.D., Rustem, B., Pistikopoulos, E.N.: Global optimization of multi-parametric milp problems. J. Glob. Optim. 45(1), 131–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Feller, C., Johansen, T.A., Olaru, S.: An improved algorithm for combinatorial multi-parametric quadratic programming. Automatica 49(5), 1370–1376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fiacco, A.V.: Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10(1), 287–311 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Elsevier, Burlington MA (1983)

  42. Fiacco, A.V., Ishizuka, Y.: Sensitivity and stability analysis for nonlinear programming. Ann. Oper. Res. 27(1), 215–235 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fiacco, A.V., Kyparisis, J.: Convexity and concavity properties of the optimal value function in parametric nonlinear programming. J. Optim. Theory Appl. 48(1), 95–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Filippi, C.: An algorithm for approximate multiparametric linear programming. J. Optim. Theory Appl. 120(1), 73–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Fotiou, I., Rostalski, P., Parrilo, P., Morari, M.: Parametric optimization and optimal control using algebraic geometry methods. Int. J. Control 79(11), 1340–1358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gal, T.: Rim multiparametric linear programming. Manag. Sci. 21(5), 567–575 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gal, T., Nedoma, J.: Multiparametric linear programming. Manag. Sci. 18(7), 406–422 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  48. Grancharova, A., Johansen, T.A., Tøndel, P.: Computational aspects of approximate explicit nonlinear model predictive control. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 181–192. Springer, Berlin (2007)

  49. Grossmann, I.E., Floudas, C.A.: Active constraint strategy for flexibility analysis in chemical processes. Comput. Chem. Eng. 11(6), 675–693 (1987)

    Article  Google Scholar 

  50. Gupta, A., Bhartiya, S., Nataraj, P.: A novel approach to multiparametric quadratic programming. Automatica 47(9), 2112–2117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hale, E.T., Qin, S.J.: Multi-parametric nonlinear programming and the evaluation of implicit optimization model adequacy. In: Proceedings of the 7th International Symposium on the Dynamics and Control of Process Systems, Cambridge, MA (2004)

  52. Halemane, K.P., Grossmann, I.E.: Optimal process design under uncertainty. AIChE J. 29(3), 425–433 (1983)

    Article  MathSciNet  Google Scholar 

  53. Herceg, M., Jones, C.N., Kvasnica, M., Morari, M.: Enumeration-based approach to solving parametric linear complementarity problems. Automatica 62, 243–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0. In: 2013 European Control Conference (ECC), pp. 502–510. IEEE (2013)

  55. Jia, Z., Ierapetritou, M.G.: Uncertainty analysis on the righthand side for milp problems. AIChE J. 52(7), 2486–2495 (2006)

    Article  Google Scholar 

  56. Jiang, H., Chen, B., Grossmann, I.E.: New algorithm for the flexibility index problem of quadratic systems. AIChE J. 64(7), 2486–2499 (2018)

    Article  Google Scholar 

  57. Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40(2), 293–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Johansen, T.A., et al.: On multi-parametric nonlinear programming and explicit nonlinear model predictive control. In: IEEE Conference on Decision and Control, vol. 3, pp. 2768–2773. IEEE (2002)

  59. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Lexicographic perturbation for multiparametric linear programming with applications to control. Automatica 43(10), 1808–1816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Katz, J., Pappas, I., Avraamidou, S., Pistikopoulos, E.N.: Integrating deep learning models and multiparametric programming. Comput. Chem. Eng. 136, 106801 (2020)

    Article  Google Scholar 

  61. Li, Z., Ierapetritou, M.G.: A new methodology for the general multiparametric mixed-integer linear programming (milp) problems. Ind. Eng. Chem. Res. 46(15), 5141–5151 (2007)

    Article  Google Scholar 

  62. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach. Discrete Appl. Math. 122(1–3), 139–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lundberg, B.N., Poore, A.B.: Bifurcations and sensitivity in parametric nonlinear programming. In: The Third AIR Force/NASA Symposium on Recent Advances in MultidisciplinaryAnalysis and Optimization, pp. 50–55. NASA (1990)

  65. Mangasarian, O.L., Fromovitz, S.: The fritz john necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17(1), 37–47 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  66. Misener, R., Floudas, C.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Misener, R., Floudas, C.A.: Advances for the pooling problem: Modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    MathSciNet  MATH  Google Scholar 

  68. Misener, R., Floudas, C.A.: Global optimization of large-scale generalized pooling problems: quadratically constrained minlp models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)

    Article  Google Scholar 

  69. Mitsos, A., Barton, P.I.: Parametric mixed-integer 0–1 linear programming: the general case for a single parameter. Eur. J. Oper. Res. 194(3), 663–686 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Narciso, D.A.C.: Developments in nonlinear multiparametric programming and control. Ph.D. thesis, Imperial College London (2009)

  71. Naşcu, I., Pistikopoulos, E.N.: Modeling, estimation and control of the anaesthesia process. Comput. Chem. Eng. 107, 318–332 (2017)

    Article  Google Scholar 

  72. Oberdieck, R., Diangelakis, N.A., Nascu, I., Papathanasiou, M.M., Sun, M., Avraamidou, S., Pistikopoulos, E.N.: On multi-parametric programming and its applications in process systems engineering. Chem. Eng. Res. Des. 116, 61–82 (2016)

    Article  Google Scholar 

  73. Oberdieck, R., Diangelakis, N.A., Papathanasiou, M.M., Nascu, I., Pistikopoulos, E.N.: Pop-parametric optimization toolbox. Ind. Eng. Chem. Res. 55(33), 8979–8991 (2016)

    Article  Google Scholar 

  74. Oberdieck, R., Diangelakis, N.A., Pistikopoulos, E.N.: Explicit model predictive control: a connected-graph approach. Automatica 76, 103–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  75. Oberdieck, R., Pistikopoulos, E.N.: Explicit hybrid model-predictive control: the exact solution. Automatica 58, 152–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. Oberdieck, R., Wittmann-Hohlbein, M., Pistikopoulos, E.N.: A branch and bound method for the solution of multiparametric mixed integer linear programming problems. J. Glob. Optim. 59(2–3), 527–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Pappas, I., Diangelakis, N.A., Pistikopoulos, E.N.: A strategy for the exact solution of multiparametric/explicit quadratically constrained NMPC problems. In: IFAC World Congress 2020. IFAC (2020)

  78. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  79. Patrinos, P., Sarimveis, H.: A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings. Automatica 46(9), 1405–1418 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Pertsinidis, A., Grossmann, I.E., McRae, G.J.: Parametric optimization of milp programs and a framework for the parametric optimization of minlps. Comput. Chem. Eng. 22, S205–S212 (1998)

    Article  Google Scholar 

  81. Pistikopoulos, E.N., Diangelakis, N.A.: Towards the integration of process design, control and scheduling: are we getting closer? Comput. Chem. Eng. 91, 85–92 (2016)

    Article  Google Scholar 

  82. Pistikopoulos, E.N., Diangelakis, N.A., Oberdieck, R., Papathanasiou, M.M., Nascu, I., Sun, M.: Paroc–an integrated framework and software platform for the optimisation and advanced model-based control of process systems. Chem. Eng. Sci. 136, 115–138 (2015)

    Article  Google Scholar 

  83. Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-Parametric Model-Based Control, Process Systems Engineering, vol. 2. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  84. Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-Parametric Programming, Process Systems Engineering, vol. 1. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  85. Pistikopoulos, E.N., Grossmann, I.E.: Optimal retrofit design for improving process flexibility in linear systems. Comput. Chem. Eng. 12(7), 719–731 (1988)

    Article  Google Scholar 

  86. Pistikopoulos, E.N., Grossmann, I.E.: Optimal retrofit design for improving process flexibility in nonlinear systems—I. Fixed degree of flexibility. Comput. Chem. Eng. 13(9), 1003–1016 (1989)

    Article  Google Scholar 

  87. Poore, A.B., Tiahrt, C.: Bifurcation problems in nonlinear parametric programming. Math. Program. 39(2), 189–205 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  88. Raber, U.: A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J. Glob. Optim. 13(4), 417–432 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  89. Sakizlis, V., Kouramas, K., Faisca, N., Pistikopoulos, E.: Towards the design of parametric model predictive controllers for non-linear constrained systems. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 193–205. Springer, Berlin (2007)

  90. Schechter, M.: Polyhedral functions and multiparametric linear programming. J. Optim. Theory Appl. 53(2), 269–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  91. Spjøtvold, J., Kerrigan, E.C., Jones, C.N., TøNdel, P., Johansen, T.A.: On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42(12), 2209–2214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  92. Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part I: formulation and theory. AIChE J. 31(4), 621–630 (1985)

    Article  Google Scholar 

  93. Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part II: computational algorithms. AIChE J. 31(4), 631–641 (1985)

    Article  Google Scholar 

  94. Tawarmalani, M., Sahinidis, N.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  95. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.0) (2019). https://www.sagemath.org. Accessed 29 Oct 2019

  96. TøNdel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic programming and explicit mpc solutions. Automatica 39(3), 489–497 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  97. Varvarezos, D.K., Grossmann, I.E., Biegler, L.T.: A sensitivity based approach for flexibility analysis and design of linear process systems. Comput. Chem. Eng. 19(12), 1301–1316 (1995)

    Article  Google Scholar 

  98. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, Inc, Oxford (1991)

    MATH  Google Scholar 

  99. Voelker, A., Kouramas, K., Pistikopoulos, E.N.: Moving horizon estimation: error dynamics and bounding error sets for robust control. Automatica 49(4), 943–948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  100. Wittmann-Hohlbein, M., Pistikopoulos, E.N.: On the global solution of multi-parametric mixed integer linear programming problems. J. Glob. Optim. 57(1), 51–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. Wittmann-Hohlbein, M., Pistikopoulos, E.N.: Approximate solution of mp-milp problems using piecewise affine relaxation of bilinear terms. Comput. Chem. Eng. 61, 136–155 (2014)

    Article  Google Scholar 

  102. Yuf, P., Zeleny, M.: Linear multiparametric programming by multicriteria simplex method. Manag. Sci. 23(2), 159–170 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Foundation (Grant No. 1705423), Texas A&M Energy Institute, Shell Oil Company and the Rapid Advancement in Process Intensification Deployment (RAPID SYNOPSIS Project - DE-EE0007888-09-04) Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Pistikopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappas, I., Diangelakis, N.A. & Pistikopoulos, E.N. The exact solution of multiparametric quadratically constrained quadratic programming problems. J Glob Optim 79, 59–85 (2021). https://doi.org/10.1007/s10898-020-00933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00933-9

Keywords