Abstract
In this paper, we present a strategy for the exact solution of multiparametric quadratically constrained quadratic programs (mpQCQPs). Specifically, we focus on multiparametric optimization problems with a convex quadratic objective function, quadratic inequality and linear equality constraints, described by constant matrices. The proposed approach is founded on the expansion of the Basic Sensitivity Theorem to a second-order Taylor approximation, which enables the derivation of the exact parametric solution of mpQCQPs. We utilize an active set strategy to implicitly explore the parameter space, based on which (i) the complete map of parametric solutions for convex mpQCQPs is constructed, and (ii) the determination of the optimal parametric solution for every feasible parameter realization reduces to a nonlinear function evaluation. Based on the presented results, we utilize the second-order approximation to the Basic Sensitivity Theorem to expand to the case of nonconvex quadratic constraints, by employing the Fritz John necessary conditions. Example problems are provided to illustrate the algorithmic steps of the proposed approach.
Similar content being viewed by others
References
Acevedo, J., Pistikopoulos, E.N.: A multiparametric programming approach for linear process engineering problems under uncertainty. Ind. Eng. Chem. Res. 36(3), 717–728 (1997)
Acevedo, J., Salgueiro, M.: An efficient algorithm for convex multiparametric nonlinear programming problems. Ind. Eng. Chem. Res. 42(23), 5883–5890 (2003)
Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)
Ahmadi-Moshkenani, P., Johansen, T.A., Olaru, S.: Combinatorial approach towards multi-parametric quadratic programming based on characterizing adjacent critical regions. IEEE Trans. Autom. Control 63, 3221–3231 (2018)
Akbari, A., Barton, P.I.: An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks. J. Optim. Theory Appl. 178, 1–36 (2018)
Al-Khayyal, F.A., Larsen, C., Van Voorhis, T.: A relaxation method for nonconvex quadratically constrained quadratic programs. J. Glob. Optim. 6(3), 215–230 (1995)
Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)
Avraamidou, S., Pistikopoulos, E.N.: Multi-parametric global optimization approach for tri-level mixed-integer linear optimization problems. J. Glob. Optim. 74, 1–23 (2018)
Avraamidou, S., Pistikopoulos, E.N.: A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems. Comput. Chem. Eng. 125, 98–113 (2019)
Axehill, D., Besselmann, T., Raimondo, D.M., Morari, M.: A parametric branch and bound approach to suboptimal explicit hybrid mpc. Automatica 50(1), 240–246 (2014)
Bansal, V., Perkins, J.D., Pistikopoulos, E.N.: Flexibility analysis and design of linear systems by parametric programming. AIChE J. 46(2), 335–354 (2000)
Bansal, V., Perkins, J.D., Pistikopoulos, E.N.: Flexibility analysis and design using a parametric programming framework. AIChE J. 48(12), 2851–2868 (2002)
Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129 (2011)
Bemporad, A.: A multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squares. IEEE Trans. Autom. Control 60(11), 2892–2903 (2015)
Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear programming—the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002)
Bemporad, A., Filippi, C.: An algorithm for approximate multiparametric convex programming. Comput. Optim. Appl. 35(1), 87–108 (2006)
Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)
Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. (TOSN) 2(2), 188–220 (2006)
Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
Borrelli, F., Bemporad, A., Morari, M.: Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003)
Boukouvala, F., Floudas, C.A.: Argonaut: Algorithms for global optimization of constrained grey-box computational problems. Optim. Lett. 11(5), 895–913 (2017)
Buchberger, B., Winkler, F.: Gröbner Bases and Applications, vol. 17. Cambridge University Press, Cambridge (1998)
Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)
Burnak, B., Diangelakis, N.A., Katz, J., Pistikopoulos, E.N.: Integrated process design, scheduling, and control using multiparametric programming. Comput. Chem. Eng. 125, 164–184 (2019)
Charitopoulos, V., Dua, V.: Explicit model predictive control of hybrid systems and multiparametric mixed integer polynomial programming. AIChE J. 62(9), 3441–3460 (2016)
Charitopoulos, V.M., Papageorgiou, L.G., Dua, V.: Multi-parametric mixed integer linear programming under global uncertainty. Comput. Chem. Eng. 116, 279–295 (2018)
Charitopoulos, V.M., Papageorgiou, L.G., Dua, V.: Closed-loop integration of planning, scheduling and multi-parametric nonlinear control. Comput. Chem. Eng. 122, 172–192 (2019)
Cox, D., Little, J., Oshea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2013)
Darby, M.L., Nikolaou, M.: A parametric programming approach to moving-horizon state estimation. Automatica 43(5), 885–891 (2007)
Diangelakis, N.A., Pappas, I.S., Pistikopoulos, E.N.: On multiparametric/explicit nmpc for quadratically constrained problems. In: IFAC NMPC 2018, pp. 490–495. IFAC (2018)
Diehl, M.: Formulation of closed-loop min–max MPC as a quadratically constrained quadratic program. IEEE Trans. Autom. Control 52(2), 339–343 (2007)
Domínguez, L.F., Narciso, D.A., Pistikopoulos, E.N.: Recent advances in multiparametric nonlinear programming. Comput. Chem. Eng. 34(5), 707–716 (2010)
Domínguez, L.F., Pistikopoulos, E.N.: A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems. AIChE J. 59(2), 483–495 (2013)
Dua, V., Bozinis, N.A., Pistikopoulos, E.N.: A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26(4–5), 715–733 (2002)
Dua, V., Papalexandri, K.P., Pistikopoulos, E.N.: Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30(1), 59–89 (2004)
Dua, V., Pistikopoulos, E.N.: Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems. Ind. Eng. Chem. Res. 38(10), 3976–3987 (1999)
Dua, V., Pistikopoulos, E.N.: An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 99(1–4), 123–139 (2000)
Faísca, N.P., Kosmidis, V.D., Rustem, B., Pistikopoulos, E.N.: Global optimization of multi-parametric milp problems. J. Glob. Optim. 45(1), 131–151 (2009)
Feller, C., Johansen, T.A., Olaru, S.: An improved algorithm for combinatorial multi-parametric quadratic programming. Automatica 49(5), 1370–1376 (2013)
Fiacco, A.V.: Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10(1), 287–311 (1976)
Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Elsevier, Burlington MA (1983)
Fiacco, A.V., Ishizuka, Y.: Sensitivity and stability analysis for nonlinear programming. Ann. Oper. Res. 27(1), 215–235 (1990)
Fiacco, A.V., Kyparisis, J.: Convexity and concavity properties of the optimal value function in parametric nonlinear programming. J. Optim. Theory Appl. 48(1), 95–126 (1986)
Filippi, C.: An algorithm for approximate multiparametric linear programming. J. Optim. Theory Appl. 120(1), 73–95 (2004)
Fotiou, I., Rostalski, P., Parrilo, P., Morari, M.: Parametric optimization and optimal control using algebraic geometry methods. Int. J. Control 79(11), 1340–1358 (2006)
Gal, T.: Rim multiparametric linear programming. Manag. Sci. 21(5), 567–575 (1975)
Gal, T., Nedoma, J.: Multiparametric linear programming. Manag. Sci. 18(7), 406–422 (1972)
Grancharova, A., Johansen, T.A., Tøndel, P.: Computational aspects of approximate explicit nonlinear model predictive control. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 181–192. Springer, Berlin (2007)
Grossmann, I.E., Floudas, C.A.: Active constraint strategy for flexibility analysis in chemical processes. Comput. Chem. Eng. 11(6), 675–693 (1987)
Gupta, A., Bhartiya, S., Nataraj, P.: A novel approach to multiparametric quadratic programming. Automatica 47(9), 2112–2117 (2011)
Hale, E.T., Qin, S.J.: Multi-parametric nonlinear programming and the evaluation of implicit optimization model adequacy. In: Proceedings of the 7th International Symposium on the Dynamics and Control of Process Systems, Cambridge, MA (2004)
Halemane, K.P., Grossmann, I.E.: Optimal process design under uncertainty. AIChE J. 29(3), 425–433 (1983)
Herceg, M., Jones, C.N., Kvasnica, M., Morari, M.: Enumeration-based approach to solving parametric linear complementarity problems. Automatica 62, 243–248 (2015)
Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0. In: 2013 European Control Conference (ECC), pp. 502–510. IEEE (2013)
Jia, Z., Ierapetritou, M.G.: Uncertainty analysis on the righthand side for milp problems. AIChE J. 52(7), 2486–2495 (2006)
Jiang, H., Chen, B., Grossmann, I.E.: New algorithm for the flexibility index problem of quadratic systems. AIChE J. 64(7), 2486–2499 (2018)
Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40(2), 293–300 (2004)
Johansen, T.A., et al.: On multi-parametric nonlinear programming and explicit nonlinear model predictive control. In: IEEE Conference on Decision and Control, vol. 3, pp. 2768–2773. IEEE (2002)
Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Lexicographic perturbation for multiparametric linear programming with applications to control. Automatica 43(10), 1808–1816 (2007)
Katz, J., Pappas, I., Avraamidou, S., Pistikopoulos, E.N.: Integrating deep learning models and multiparametric programming. Comput. Chem. Eng. 136, 106801 (2020)
Li, Z., Ierapetritou, M.G.: A new methodology for the general multiparametric mixed-integer linear programming (milp) problems. Ind. Eng. Chem. Res. 46(15), 5141–5151 (2007)
Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)
Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach. Discrete Appl. Math. 122(1–3), 139–166 (2002)
Lundberg, B.N., Poore, A.B.: Bifurcations and sensitivity in parametric nonlinear programming. In: The Third AIR Force/NASA Symposium on Recent Advances in MultidisciplinaryAnalysis and Optimization, pp. 50–55. NASA (1990)
Mangasarian, O.L., Fromovitz, S.: The fritz john necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17(1), 37–47 (1967)
Misener, R., Floudas, C.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014)
Misener, R., Floudas, C.A.: Advances for the pooling problem: Modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)
Misener, R., Floudas, C.A.: Global optimization of large-scale generalized pooling problems: quadratically constrained minlp models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)
Mitsos, A., Barton, P.I.: Parametric mixed-integer 0–1 linear programming: the general case for a single parameter. Eur. J. Oper. Res. 194(3), 663–686 (2009)
Narciso, D.A.C.: Developments in nonlinear multiparametric programming and control. Ph.D. thesis, Imperial College London (2009)
Naşcu, I., Pistikopoulos, E.N.: Modeling, estimation and control of the anaesthesia process. Comput. Chem. Eng. 107, 318–332 (2017)
Oberdieck, R., Diangelakis, N.A., Nascu, I., Papathanasiou, M.M., Sun, M., Avraamidou, S., Pistikopoulos, E.N.: On multi-parametric programming and its applications in process systems engineering. Chem. Eng. Res. Des. 116, 61–82 (2016)
Oberdieck, R., Diangelakis, N.A., Papathanasiou, M.M., Nascu, I., Pistikopoulos, E.N.: Pop-parametric optimization toolbox. Ind. Eng. Chem. Res. 55(33), 8979–8991 (2016)
Oberdieck, R., Diangelakis, N.A., Pistikopoulos, E.N.: Explicit model predictive control: a connected-graph approach. Automatica 76, 103–112 (2017)
Oberdieck, R., Pistikopoulos, E.N.: Explicit hybrid model-predictive control: the exact solution. Automatica 58, 152–159 (2015)
Oberdieck, R., Wittmann-Hohlbein, M., Pistikopoulos, E.N.: A branch and bound method for the solution of multiparametric mixed integer linear programming problems. J. Glob. Optim. 59(2–3), 527–543 (2014)
Pappas, I., Diangelakis, N.A., Pistikopoulos, E.N.: A strategy for the exact solution of multiparametric/explicit quadratically constrained NMPC problems. In: IFAC World Congress 2020. IFAC (2020)
Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optim. 1(1), 15–22 (1991)
Patrinos, P., Sarimveis, H.: A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings. Automatica 46(9), 1405–1418 (2010)
Pertsinidis, A., Grossmann, I.E., McRae, G.J.: Parametric optimization of milp programs and a framework for the parametric optimization of minlps. Comput. Chem. Eng. 22, S205–S212 (1998)
Pistikopoulos, E.N., Diangelakis, N.A.: Towards the integration of process design, control and scheduling: are we getting closer? Comput. Chem. Eng. 91, 85–92 (2016)
Pistikopoulos, E.N., Diangelakis, N.A., Oberdieck, R., Papathanasiou, M.M., Nascu, I., Sun, M.: Paroc–an integrated framework and software platform for the optimisation and advanced model-based control of process systems. Chem. Eng. Sci. 136, 115–138 (2015)
Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-Parametric Model-Based Control, Process Systems Engineering, vol. 2. Wiley-VCH, Weinheim (2011)
Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-Parametric Programming, Process Systems Engineering, vol. 1. Wiley-VCH, Weinheim (2011)
Pistikopoulos, E.N., Grossmann, I.E.: Optimal retrofit design for improving process flexibility in linear systems. Comput. Chem. Eng. 12(7), 719–731 (1988)
Pistikopoulos, E.N., Grossmann, I.E.: Optimal retrofit design for improving process flexibility in nonlinear systems—I. Fixed degree of flexibility. Comput. Chem. Eng. 13(9), 1003–1016 (1989)
Poore, A.B., Tiahrt, C.: Bifurcation problems in nonlinear parametric programming. Math. Program. 39(2), 189–205 (1987)
Raber, U.: A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J. Glob. Optim. 13(4), 417–432 (1998)
Sakizlis, V., Kouramas, K., Faisca, N., Pistikopoulos, E.: Towards the design of parametric model predictive controllers for non-linear constrained systems. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 193–205. Springer, Berlin (2007)
Schechter, M.: Polyhedral functions and multiparametric linear programming. J. Optim. Theory Appl. 53(2), 269–280 (1987)
Spjøtvold, J., Kerrigan, E.C., Jones, C.N., TøNdel, P., Johansen, T.A.: On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42(12), 2209–2214 (2006)
Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part I: formulation and theory. AIChE J. 31(4), 621–630 (1985)
Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part II: computational algorithms. AIChE J. 31(4), 631–641 (1985)
Tawarmalani, M., Sahinidis, N.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.0) (2019). https://www.sagemath.org. Accessed 29 Oct 2019
TøNdel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic programming and explicit mpc solutions. Automatica 39(3), 489–497 (2003)
Varvarezos, D.K., Grossmann, I.E., Biegler, L.T.: A sensitivity based approach for flexibility analysis and design of linear process systems. Comput. Chem. Eng. 19(12), 1301–1316 (1995)
Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, Inc, Oxford (1991)
Voelker, A., Kouramas, K., Pistikopoulos, E.N.: Moving horizon estimation: error dynamics and bounding error sets for robust control. Automatica 49(4), 943–948 (2013)
Wittmann-Hohlbein, M., Pistikopoulos, E.N.: On the global solution of multi-parametric mixed integer linear programming problems. J. Glob. Optim. 57(1), 51–73 (2013)
Wittmann-Hohlbein, M., Pistikopoulos, E.N.: Approximate solution of mp-milp problems using piecewise affine relaxation of bilinear terms. Comput. Chem. Eng. 61, 136–155 (2014)
Yuf, P., Zeleny, M.: Linear multiparametric programming by multicriteria simplex method. Manag. Sci. 23(2), 159–170 (1976)
Acknowledgements
Financial support from the National Science Foundation (Grant No. 1705423), Texas A&M Energy Institute, Shell Oil Company and the Rapid Advancement in Process Intensification Deployment (RAPID SYNOPSIS Project - DE-EE0007888-09-04) Institute is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pappas, I., Diangelakis, N.A. & Pistikopoulos, E.N. The exact solution of multiparametric quadratically constrained quadratic programming problems. J Glob Optim 79, 59–85 (2021). https://doi.org/10.1007/s10898-020-00933-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-020-00933-9