Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider the wireless sensor network in which the power of each sensor is adjustable. Given a set of sensors and a set of targets, we study a problem of minimizing the total power such that the coverage of targets meets partial multi-cover requirement, that is, there are at least a given number of targets each covered by a given number of sensors (this number is called the covering requirement for the target). This is called the minimum power partial multi-cover problem (MinPowerPMC) in a wireless sensor network. Under the assumption that the covering requirements for all targets are upper bounded by a constant, we design the first PTAS for the MinPowerPMC problem, that is, for any \(\varepsilon >0\), a polynomial-time \((1+\varepsilon )\)-approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abu-Affash, A.K., Carmi, P., Katz, M.J., Morgenstern, G.: Multi cover of a polygon minimizing the sum of areas. Int. J. Comput. Geom. Appl. 21(6), 685–698 (2011)

    Article  MathSciNet  Google Scholar 

  2. Alt, H., Arkin, E. M., Brönnimann, H., Erickson, J., Fekete, S. P., Knauer, C., Lenchner, J., Mitchell, J. S. B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: 22nd ACM Symposium on Computational Geometry, pp. 449–458 (2006)

  3. Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. In: Proceedings of the European Symposium on Algorithms, pp. 145–156 (2012)

  4. Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disks. Comput. Geom. 46(3), 394–399 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bhowmick, S., Varadarajan, K.R., Xue, S.K.: A constant-factor approximation for multi-covering with disks. In: Symposium on Computational Geometry, pp. 243–248 (2013)

  6. Bhowmick, S., Varadarajan, K.R., Xue, S.K.: A constant-factor approximation for multi-covering with disks. JoCG 6(1), 220–234 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Bhowmick, S., Inamdar, T., Kasturi, R.: Varadarajan: fault-tolerant covering problems in metric spaces. Algorithmica 83(2), 413–446 (2021)

    Article  MathSciNet  Google Scholar 

  8. Biló, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: ESA, pp. 460–471 (2005)

  9. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

    Article  MathSciNet  Google Scholar 

  10. Brualdi, R.A.: Introductory Combinatorics. Prentice Hall (2009)

  11. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46, 178–189 (2003)

    Article  MathSciNet  Google Scholar 

  12. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: SODA, pp. 1576–1585 (2012)

  13. Cai, Z., Chen, Q.: Latency-and-coverage aware data aggregation scheduling for multihop battery-free wireless networks. IEEE Trans. Wirel. Commun. 20(3), 1770–1784 (2021)

    Article  Google Scholar 

  14. Cardei, M., Thai, M., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor networks. In: INFOCOM’05, Miami (2005)

  15. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68(2), 417–441 (2004)

    Article  MathSciNet  Google Scholar 

  16. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multi-cover problem in geometric settings. In: 25th ACM Symposium on Computational Geometry, pp. 341–350 (2009)

  17. Chekuri, C., Quanrud, K., Zhang, Z.: On approximating partial set cover and generalizations. arXiv:1907.04413

  18. Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2(2), 195–222 (1987)

    Article  MathSciNet  Google Scholar 

  19. Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal fitting. A conference version in WAOA, pp. 137–150 (2003) A full version inhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.585.9484

  20. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  Google Scholar 

  21. Gupta, H., Das, S., Gu, Q.: Connected sensor cover: self-organization of sensor networks for efficient query execution. In: MobiHoc’03, pp. 189–200 (2003)

  22. Haussler, D., Welzl, E.: \(\varepsilon \)-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)

    Article  MathSciNet  Google Scholar 

  23. Inamdar, T., Varadarajan, K.: On partial covering for geometric set system. Comput. Geom. 47, 1–14 (2018)

    MATH  Google Scholar 

  24. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Comput. Netw. 47(4), 489–501 (2005)

    Article  Google Scholar 

  25. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: ICALP, pp. 898–909 (2015)

  26. Li, M., Ran, Y., Zhang, Z.: Approximation algorithms for the minimum power partial cover problem. In: AAIM2019, LNCS 11640, pp. 1–13

  27. Liang, W., Li, M., Zhang, Z., Huang, X.: Minimum power partial multi-cover on a line. Theor. Comput. Sci. 864, 118–128 (2021)

    Article  MathSciNet  Google Scholar 

  28. Liu, P., Huang, X.: Approximation algorithm for partial set multicover versus full set multicover. Discrete Math. Algorithms Appl. 10(2), 1850026 (2018)

    Article  MathSciNet  Google Scholar 

  29. Manurangsi, P.: Almost-polynomial ratio ETH-hardness of approximating densest \(k\)-subgraph. In: STOC, pp. 19–23 (2017)

  30. Mustafa, N.H., Raman, R., Ray, S.: Quasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks. SIAM J. Comput. 44(6), 1650–1669 (2015)

    Article  MathSciNet  Google Scholar 

  31. Rajiv, R., Ray, S.: Improved approximation algorithm for set multicover with non-piercing regions. In: 28th Annual European Symposium on Algorithms (ESA 2020). Schloss Dagstuhl-Leibniz-Zentrum för Informatik (2020)

  32. Ran, Y., Shi, Y., Tang, C., Zhang, Z.: A primal-dual algorithm for the minimum partial set multi-cover problem. J. Combin. Optim. 39, 725–746 (2020)

    Article  MathSciNet  Google Scholar 

  33. Shi, T., Cheng, S., Li, J., Gao, H., Cai, Z.: Dominating sets construction in RF-based battery-free sensor networks with full coverage guarantee. ACM Trans. Sens. Netw. 15(4), Article 43 (2019)

  34. Varadarajan, K.R.: Weighted geometric set cover via quasi-uniform sampling. In: Proceedings of ACM Symposium on Theory of Computing, pp. 641–648 (2010)

  35. Wu, W., Zhang, Z., Lee, W., Du, D.-Z.: Optimal Coverage in Wireless Sensor Networks. Springer (2020)

  36. Zhang, Z., Willson, J., Lu, Z., Wu, W., Zhu, X., Du, D.-Z.: Approximating maximum lifetime \(k\)-coverage through minimizing weighted \(k\)-cover in homogeneous wireless sensor networks. IEEE/ACM Trans. Netw. 24(6), 3620–3633 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by National Natural Science Foundation of China (11901533, U20A2068, 11771013), Zhejiang Provincial Natural Science Foundation of China (LD19A010001) and National Science Foundation of USA (1907472).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Zhang or Ding-Zhu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, Y., Huang, X., Zhang, Z. et al. Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks. J Glob Optim 80, 661–677 (2021). https://doi.org/10.1007/s10898-021-01033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01033-y

Keywords