Abstract
In this paper, we consider the wireless sensor network in which the power of each sensor is adjustable. Given a set of sensors and a set of targets, we study a problem of minimizing the total power such that the coverage of targets meets partial multi-cover requirement, that is, there are at least a given number of targets each covered by a given number of sensors (this number is called the covering requirement for the target). This is called the minimum power partial multi-cover problem (MinPowerPMC) in a wireless sensor network. Under the assumption that the covering requirements for all targets are upper bounded by a constant, we design the first PTAS for the MinPowerPMC problem, that is, for any \(\varepsilon >0\), a polynomial-time \((1+\varepsilon )\)-approximation.
Similar content being viewed by others
References
Abu-Affash, A.K., Carmi, P., Katz, M.J., Morgenstern, G.: Multi cover of a polygon minimizing the sum of areas. Int. J. Comput. Geom. Appl. 21(6), 685–698 (2011)
Alt, H., Arkin, E. M., Brönnimann, H., Erickson, J., Fekete, S. P., Knauer, C., Lenchner, J., Mitchell, J. S. B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: 22nd ACM Symposium on Computational Geometry, pp. 449–458 (2006)
Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. In: Proceedings of the European Symposium on Algorithms, pp. 145–156 (2012)
Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disks. Comput. Geom. 46(3), 394–399 (2013)
Bhowmick, S., Varadarajan, K.R., Xue, S.K.: A constant-factor approximation for multi-covering with disks. In: Symposium on Computational Geometry, pp. 243–248 (2013)
Bhowmick, S., Varadarajan, K.R., Xue, S.K.: A constant-factor approximation for multi-covering with disks. JoCG 6(1), 220–234 (2015)
Bhowmick, S., Inamdar, T., Kasturi, R.: Varadarajan: fault-tolerant covering problems in metric spaces. Algorithmica 83(2), 413–446 (2021)
Biló, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: ESA, pp. 460–471 (2005)
Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)
Brualdi, R.A.: Introductory Combinatorics. Prentice Hall (2009)
Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46, 178–189 (2003)
Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: SODA, pp. 1576–1585 (2012)
Cai, Z., Chen, Q.: Latency-and-coverage aware data aggregation scheduling for multihop battery-free wireless networks. IEEE Trans. Wirel. Commun. 20(3), 1770–1784 (2021)
Cardei, M., Thai, M., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor networks. In: INFOCOM’05, Miami (2005)
Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68(2), 417–441 (2004)
Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multi-cover problem in geometric settings. In: 25th ACM Symposium on Computational Geometry, pp. 341–350 (2009)
Chekuri, C., Quanrud, K., Zhang, Z.: On approximating partial set cover and generalizations. arXiv:1907.04413
Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2(2), 195–222 (1987)
Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal fitting. A conference version in WAOA, pp. 137–150 (2003) A full version inhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.585.9484
Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)
Gupta, H., Das, S., Gu, Q.: Connected sensor cover: self-organization of sensor networks for efficient query execution. In: MobiHoc’03, pp. 189–200 (2003)
Haussler, D., Welzl, E.: \(\varepsilon \)-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)
Inamdar, T., Varadarajan, K.: On partial covering for geometric set system. Comput. Geom. 47, 1–14 (2018)
Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Comput. Netw. 47(4), 489–501 (2005)
Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: ICALP, pp. 898–909 (2015)
Li, M., Ran, Y., Zhang, Z.: Approximation algorithms for the minimum power partial cover problem. In: AAIM2019, LNCS 11640, pp. 1–13
Liang, W., Li, M., Zhang, Z., Huang, X.: Minimum power partial multi-cover on a line. Theor. Comput. Sci. 864, 118–128 (2021)
Liu, P., Huang, X.: Approximation algorithm for partial set multicover versus full set multicover. Discrete Math. Algorithms Appl. 10(2), 1850026 (2018)
Manurangsi, P.: Almost-polynomial ratio ETH-hardness of approximating densest \(k\)-subgraph. In: STOC, pp. 19–23 (2017)
Mustafa, N.H., Raman, R., Ray, S.: Quasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks. SIAM J. Comput. 44(6), 1650–1669 (2015)
Rajiv, R., Ray, S.: Improved approximation algorithm for set multicover with non-piercing regions. In: 28th Annual European Symposium on Algorithms (ESA 2020). Schloss Dagstuhl-Leibniz-Zentrum för Informatik (2020)
Ran, Y., Shi, Y., Tang, C., Zhang, Z.: A primal-dual algorithm for the minimum partial set multi-cover problem. J. Combin. Optim. 39, 725–746 (2020)
Shi, T., Cheng, S., Li, J., Gao, H., Cai, Z.: Dominating sets construction in RF-based battery-free sensor networks with full coverage guarantee. ACM Trans. Sens. Netw. 15(4), Article 43 (2019)
Varadarajan, K.R.: Weighted geometric set cover via quasi-uniform sampling. In: Proceedings of ACM Symposium on Theory of Computing, pp. 641–648 (2010)
Wu, W., Zhang, Z., Lee, W., Du, D.-Z.: Optimal Coverage in Wireless Sensor Networks. Springer (2020)
Zhang, Z., Willson, J., Lu, Z., Wu, W., Zhu, X., Du, D.-Z.: Approximating maximum lifetime \(k\)-coverage through minimizing weighted \(k\)-cover in homogeneous wireless sensor networks. IEEE/ACM Trans. Netw. 24(6), 3620–3633 (2016)
Acknowledgements
This research is supported in part by National Natural Science Foundation of China (11901533, U20A2068, 11771013), Zhejiang Provincial Natural Science Foundation of China (LD19A010001) and National Science Foundation of USA (1907472).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ran, Y., Huang, X., Zhang, Z. et al. Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks. J Glob Optim 80, 661–677 (2021). https://doi.org/10.1007/s10898-021-01033-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-021-01033-y