Abstract
Recently, the fractional Fokker–Planck equations (FFPEs) with multiple internal states are built for the particles undergoing anomalous diffusion with different waiting time distributions for different internal states, which describe the distribution of positions of the particles (Xu and Deng in Math Model Nat Phenom 13:10, 2018). In this paper, we first develop the Sobolev regularity of the FFPEs with two internal states, including the homogeneous problem with smooth and nonsmooth initial values and the inhomogeneous problem with vanishing initial value, and then we design the numerical scheme for the system of fractional partial differential equations based on the finite element method for the space derivatives and convolution quadrature for the time fractional derivatives. The optimal error estimates of the scheme under the above three different conditions are provided for both space semidiscrete and fully discrete schemes. Finally, one- and two-dimensional numerical experiments are performed to confirm our theoretical analysis and the predicted convergence order.
Similar content being viewed by others
References
Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)
Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)
Bazhlekova, E., Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)
Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)
Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2009)
Deng, W.H., Li, B.Y., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)
Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)
Gunzburger, M., Li, B.Y., Wang, J.L.: Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comp. 88, 1715–1741 (2018)
Heinsalu, E., Patriarca, M., Goychuk, I., Schmid, G., Hänggi, P.: Fractional Fokker–Planck dynamics: numerical algorithm and simulations. Phys. Rev. E 73, 046133 (2006)
Jin, B.T., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)
Jin, B.T., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52, 2272–2294 (2014)
Jin, B.T., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)
Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2015)
Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)
Jin, B.T., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Engrgy 346, 332–358 (2019)
Jin, B.T., Li, B.Y., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)
Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)
Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)
Li, W.L., Xu, D.: Finite central difference/finite element approximations for parabolic integro-differential equations. Computing 90, 89–111 (2010)
Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Liu, F.W., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)
Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)
Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988)
Lubich, C.: Convolution quadrature revisited. BIT 44, 503–514 (2004)
Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)
Meerschaert, M.M., Scheffler, H.-P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)
Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)
Xu, P.B., Deng, W.H.: Fractional compound Poisson processes with multiple internal states. Math. Model. Nat. Phenom. 13, 10 (2018)
Xu, P.B., Deng, W.H.: Lévy walk with multiple internal states. J. Stat. Phys. 173, 1598–1613 (2018)
Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)
Acknowledgements
Funding was provided by National Natural Science Foundation of China (Grant No. 11671182).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nie, D., Sun, J. & Deng, W. Numerical Scheme for the Fokker–Planck Equations Describing Anomalous Diffusions with Two Internal States. J Sci Comput 83, 33 (2020). https://doi.org/10.1007/s10915-020-01218-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01218-9