Abstract
In this paper, we consider the Dirichlet boundary control problem of elliptic partial differential equations, and get a coupling system of the state and adjoint state by cancelling the control variable in terms of the control rule, and prove that this coupling system is equivalent to the known Karush–Kuhn–Tucker (KKT) system. For corresponding finite element approximation, we find a measure of the numerical errors by employing harmonic extension, based on this measure, we develop residual-based a posteriori error analytical technique for the Dirichlet boundary control problem. The derived estimators for the coupling system and the KKT system are proved to be reliable and efficient over adaptive mesh. Numerical examples are presented to validate our theory.
Similar content being viewed by others
References
Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)
Geveci, T.: On the approximation of the solution of an optimal control problem governed by an ellptic equation. Rairo Anal. Numér. 13, 313–328 (1979)
Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)
Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002)
Gunzburger, M.D., Hou, L.S.: Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34, 1001–1043 (1996)
Fursikov, A.V., Gunzburger, M.D., Hou, L.S.: Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim. 36, 852–894 (1998)
Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–219 (2005)
Casas, E., Raymond, J.P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45, 1586–1611 (2006)
Vexler, B.: Finite element approximation of elliptic Dirichlet optimal control problems. Numer. Funct. Anal. Optim. 28, 957–973 (2007)
Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48, 2798–2819 (2009)
May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51, 2585–2611 (2013)
Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: Error estimates for Dirichlet control problem in polygonal domains, Math. Control Relat. F., 8, E-print
Of, G., Phan, T.X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math. 129, 723–748 (2015)
Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Analysis and finite element approximation of optimal control problems for the stationary Navier–Stokes equations with Dirichlet controls. Rairo Modél. Math. Anal. Numér. 25, 711–748 (1991)
Chowdhury, S., Gudi, T., Nandakumaran, A.K.: Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comput. 86, 1103–1126 (2017)
Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30, 167–181 (1992)
Gong, W., Yan, N.N.: Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs. SIAM J. Control Optim. 49, 984–1014 (2011)
Hu, W.W., Shen, J.G., Singler, J.R., Zhang, Y.W., Zheng, X.: A superconvergence hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs. Numer. Math. 144, 375–411 (2020)
Du, S., Cai, Z.: A finite element method for Dirichlet boundary control of elliptic partial differential equations
Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)
Zhang, Z.: Recovery techniques in finite element methods. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and Algorithms, Mathematics Monographs Series 6, pp. 333–412. Science Publisher, New York (2007)
Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)
Ainsworth, M., Allendes, A., Barrenechea, G.R., Rankin, R.: Fully computable a posteriori error bounds for stabilized FEM approximations of convection–reaction–diffusion problems in three dimentions. Int. J. Numer. Meth. Fluids 73, 765–790 (2013)
Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47, 2132–2156 (2009)
Demlow, A., Hirani, A.N.: A posteriori error estimates for finite element exterior calculus: the deRham complex. Found. Comput. Math. 14, 1337–1371 (2014)
Du, S., Zhang, Z.: A robust residual-type a posteriori error estimator for convection–diffusion equations. J. Sci. Comput. 65, 138–170 (2015)
Du, S., Sun, S., Xie, X.: Residual-based a posteriori error estimation for multipoint flux mixed finite element methods. Numer. Math. 134, 197–222 (2016)
Verfürth, R.: A Review of a Posteriori Error Estimates and Adaptive Mesh Refinement Techniques. Wiley-Teubner, New York (1996)
Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)
Liu, W.B., Yan, N.N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15, 285–309 (2001)
Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008)
Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)
Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)
Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52, 1832–1861 (2014)
Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error estimators for control constrained optimal control problems. In: Series, Leugering International, of Numerical Mathematics, vol. 160, et al. (eds.) constrained optimization and optimal control for partial differential equations, pp. 431–443. Birkhäuser/Springer, Basel AG, Basel (2012)
Schneider, R., Wachsmuth, G.: A posteriori error estimation for control-constrained, linear-quadratic optimal control problems. SIAM J. Numer. Anal. 54, 1169–1192 (2016)
Gong, W., Liu, W.B., Tan, Z.Y., Yan, N.N.: A convergent adaptive finite element method for elliptic Dirichlet boundary control problems. IMA J. Numer. Anal. 39, 1985–2015 (2019)
Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99, 1–24 (2004)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Clemént, P.H.: Approximation by finite element functions using local regularization. Rairosér. Rouge Anal. Numér. 2, 77–84 (1975)
Sangalli, G.: Robust a-posteriori estimator for advection–diffusion–reaction problems. Math. Comput. 77, 41–70 (2008)
Verfürth, R.: A posteriori error estimates and adaptive mesh-refinment techniques. J. Comput. Appl. Math. 50, 67–83 (1994)
Verfürth, R.: A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations. Math. Comput. 62, 445–475 (1994)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported in part by the Natural Science Foundation of Chongqing (cstc2018jcyjAX490), the Education Science Foundation of Chongqing (KJZD-K201900701), and the Team Building Projection for Graduate Tutors in Chongqing (JDDSTD201802).
Rights and permissions
About this article
Cite this article
Du, S., Cai, Z. Adaptive Finite Element Method for Dirichlet Boundary Control of Elliptic Partial Differential Equations. J Sci Comput 89, 36 (2021). https://doi.org/10.1007/s10915-021-01644-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01644-3
Keywords
- Dirichlet boundary control problem
- A coupling system of the state and adjoint state
- The KKT system
- Equivalence
- A posteriori error estimates
- Reliability and efficiency