Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Multiscale RBF Method for Severely Ill-Posed Problems on Spheres

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze the support vector approach to approximating the solution of a severely ill-posed problem \(Au=f\) on the sphere, in which A is an ill-posed map from the unit sphere to a concentric larger sphere. The Vapnik’s \(\varepsilon \)-intensive function is adopted in the regularization technique to reduce the error induced by noisy data. The method is then extended to a multiscale algorithm by varying the support radius of the radial basis functions at each scale. We discuss the convergence of the multiscale support vector approach and provide strategies for choosing both regularization parameters and cut-off parameters at each level. Numerical examples are constructed to verify the efficiency of the multiscale support vector approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Boser, B.E., Guyon, I.M., and Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler D (ed.) Proceedings of the 5th annual CAM workshop on computational learning theory (ACM Press), pp. 144-152 (1992)

  2. Bruckner, G., Pereverzyev, S.V.: Self-regularization of projection methods with a posteriori discretization level choice for severely ill-posed problems. Inverse Probl. 19, 147–156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruckner, G., Prössdorf, S., Vainikko, G.: Error bounds of discretization methods for boundary integral equations with noisy data. Appl. Anal. 63, 25–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, H., Pereverzyev, S.V., Sloan, I.H., Tkachenko, P.: Two-parameter regularization of ill-posed spherical pseudo-differential equations in the space of continuous functions. Appl. Math. Comput. 273, 993–1005 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  MATH  Google Scholar 

  6. Chernih, A., LeGia, Q.T.: Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs. IMA J. Numer. Anal. 34, 569–591 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chernih, A., LeGia, Q.T.: Multiscale methods with compactly supported radial basis functions for elliptic partial differential equations on bounded domains. ANZIAM J. 54, 137–152 (2013)

    Article  MathSciNet  Google Scholar 

  8. Freeden, W., Michel, V.: Multiscale Potential Theory With Application to Geoscience. Birkhauser Boston Inc., Boston, MA (2004)

    Book  MATH  Google Scholar 

  9. Fasshauer, G.E.: Meshfree Approximations Methods with Matlab. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  10. Floater, M.S., Iske, A.: Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 73, 65–78 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  12. Harbrecht, H., Pereverzyev, S.V., Schneider, R.: Self-regularization by projection for noisy pseudo differential equation of negative order. Numer. Math. 95, 123–143 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hon, Y.C., Schaback, R.: Solvability of partial differential equations by meshless kernel methods. Adv. Comput. Math. 28, 283–299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. Proc. Simul. Conf. 4(1986), 111–117 (1986)

    Google Scholar 

  15. Krebs, J.: Support vector regression for the solution of linear integral equations. Inverse Prob. 27, 065007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. J. Inverse Ill-Posed Probl. 17(2009), 845–69 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Le Gia, Q.T., Mhaskar, H.N.: Polynomial operators and local approximation of solutions of pseudo-differential equations on the sphere. Numer. Math. 103, 299–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, S., Mathé, P., Pereverzyev, S., Jr.: Analysis of regularized Nystr?m subsampling for regression functions of low smoothness. Anal. Appl. (Singapore) 17, 931–946 (2019)

    Article  MATH  Google Scholar 

  19. Le Gia, Q.T., Narcowich, F.J., Ward, J.D., Wendland, H.: Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 48, 2065–2090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere. Appl. Comput. Harmon. Anal. 32, 401–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Müller, C.: Spherical Harmonics. Lecture Notes in Math, vol. 17. Springer-Verlag, Berlin (1966)

  23. Mathé, P., Hofmann, B.: How general are general source conditions. Inverse Prob. 24, 015009 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rieger, C., Zwicknagel, C.B.: Deterministic error analysis of support vector regression and related regularized kernel methods. J. Mach. Learn. Res. 10, 2115–2132 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  26. Svensson, S.L.: Pseudo differential operators - a new approach to the boundary value problems of physical geodesy. Manusc. Geod. 8, 1–40 (1983)

    MATH  Google Scholar 

  27. Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. In: Chui CK, Schumaker LL, editors. Approximation theory VIII. Vol. 1, Approximation and interpolation. Singapore: World Scientific Publishing. pp. 491-514 (1995)

  28. Schaback, R., On, R.: The efficiency of interpolation by radial basis functions. In: Le Mhaut, A., Rabut, C., Schumaker, L.L. (eds.) Surface fitting and multiresolution methods, pp. 309–318. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  29. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schölkopf, B., Smola, A.J., Wiliamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)

    Article  Google Scholar 

  31. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  32. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  34. Wendland, H.: Multiscale analysis in Sobolev space on bounded domains. Numer. Math. 116, 493–517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wendland, H.: Solving partial differential equations with multiscale radial basis functions. In book: Contemporary Computational Mathematics. https://doi.org/10.1007/978-3-319-72456-0-55.

  36. Xu, B.X., Lu, S., Zhong, M.: Multiscale support vector regression method in Sobolev spaces on bounded domains. Appl. Anal. 94, 548–569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhong, M., Hon, Y.C., Lu, S.: Multiscale analysis for ill-posed problem with Support Vector Approach. J. Sci. Comput. 64, 317–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhong, M., Lu, S., Cheng, J.: Multiscale analysis for ill-posed problemswith semi-discrete Tikhonov regularization. Inverse Probl. 28, 065019 (2012)

    Article  MATH  Google Scholar 

  39. Zhong, M., Le Gia, Q.T., Wang, W.: Multiscale support vector regression method on sphere with data compression. Appl. Anal. 98, 1496–1519 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. Zhong is supported by the NSFC (No. 11871149) and supported by Zhishan Youth Scholar Program of SEU. The support from the Australian Research Council Discovery Grant DP180100506 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhong.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We also illustrate that the quadratic program (41) is solved by MATLAB codes quadprog, the corresponding matrices are defined via (16), but modified into multiscale version.

figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Gia, Q.T.L. & Sloan, I.H. A Multiscale RBF Method for Severely Ill-Posed Problems on Spheres. J Sci Comput 94, 22 (2023). https://doi.org/10.1007/s10915-022-02046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02046-9

Keywords